Identification of Genes Homologous to Protease Inhibitors Present in the Genome of the Pathogenic Oomycete of the Solanaceae Family

Keywords: Biotechnology, Genes, Evolution, Computer programming, Enzymes

Abstract

The sequencing of genomes of various pathogens of the Phytophtora genus has led to the identification of genes encoding effector proteins that allow evasion and manipulation of plant defense. The objective of the research was the search and identification of sequences homologous to protease and glucanase inhibitor proteins within the genome of P. capsici (CPV-282) isolated from chili in Mexico. The methodology consisted of analyzing extracellular protein inhibitors (EPI), protease inhibitors with cystatin-like domains (EPIC) and glucanase inhibitor proteins (GIP) reported in Phytophtora infestans, Phytophtora sojae, Phytophtora ramorum and Phytophtora brassicae. Results obtained: The in silico analysis revealed the presence of homologous genes to EPI10, EPIC3, PiGIP and PsGIP, from which oligonucleotides were designed to confirm the prediction of the bioinformatics analysis. The sequences obtained from the products amplified by Polymerase Chain Reaction allowed the identification of sequences homologous to cystatin-type protease inhibitors (PcEPIC3) and glucanase inhibitors (PcGIP) within the P. capsici genome. The results suggest that the Phytophthora genus shares genetic tools that allow it to manipulate the plant's defense systems and thus be efficient in the colonization of its host.

Downloads

Download data is not yet available.

Author Biographies

Estefanía Ramírez-Delgado, Monterrey Institute of Technology, Mexico

Monterrey Technological Institute, Department of Bioengineering, Mexico.

Verónica Ancona, Texas A&M University

Texas A&M University-Kingsville Citrus Center,  Weslaco, Texas, Estados Unidos.

Gustavo A. Frías-Treviño, Antonio Narro Autonomous Agrarian University, Mexico

Universidad Autónoma Agraria Antonio Narro, Saltillo, Coahuila, México.

José Luis Hernández-Mendoza, National Polytechnic Institute, Mexico

National Polytechnic Institute, Reynosa, Tamaulipas, Mexico.

Israel García-León, National Polytechnic Institute, Mexico

National Polytechnic Institute, Reynosa, Tamaulipas, Mexico.

Jesús Di Carlo Quiroz-Velásquez, National Polytechnic Institute, Mexico

National Polytechnic Institute, Reynosa, Tamaulipas, Mexico.

References

Armitage, A.D., E. Lysøe, C.F. Nellist, L.A. Lewis, L.M. Cano, R.J. Harrison y M.B. Brurberg. (2018). Bioinformatic characterisation of the effector repertoire of the strawberry pathogen Phytophthora cactorum. PLoS ONE 13:1–24. https://doi.org/10.1371/journal.pone.0202305

Birch, P.R.J., A.P. Rehmany, L. Pritchard, S. Kamoun y J.L. Beynon. (2006). Trafficking arms: oomycete effectors enter host plant cells. Trends Microbiol 14: 8–11. DOI: 10.1016/j.tim.2005.11.007

Castro-Rocha A., J.P. Flores-Márgez, M. Aguirre-Ramírez, S.P. Fernández-Pavía, G. Rodríguez-Alvarado y P. Osuna-Ávila. (2015). Traditional and Molecular Studies of the Plant Pathogen Phytophthora capsici: A Review. J Plant Pathol Microb. 05:06. DOI: 10.4172/2157-7471.1000245

Damasceno C.M.B., J.G. Bishop, D.R. Ripoll, J. Win, S. Kamoun y J.K.C. Rose. (2008). Structure of the glucanase inhibitor protein (GIP) family from Phytophthora species suggests coevolution with plant endo-beta-1,3-glucanases. MPMI 21: 820–30. DOI: 10.1094/MPMI-21-6-0820

Fan G., Y. Yang, T. Li, W. Lu, Y. Du, X. Qiang, Q. Wen y W. Shan. (2018). A Phytophthora capsici RXLR Effector Targets and Inhibits a Plant PPIase to Suppress Endoplasmic Reticulum-Mediated Immunity. Molecular Plant 11:1067–83. DOI: 10.1016/j.molp.2018.05.009

Franceschetti, M., A. Maqbool, H. G. Pennington, S. Kamoun y M.J. Banfield. (2017). Effectors of Filamentous Plant Pathogens: Commonalities amid diversity. Microbiology and Molecular Biology Reviews 81(2), 1–17. DOI: 10.1128/MMBR.00066-16

Hein I., E.M. Gilroy, M.R. Armstrong y P.R.J. Birch. (2009). The zig-zag-zig in oomycete-plant interactions. Mol. Plant Pathol. 10: 547–62. DOI:10.1111/j.1364-3703.2009.00547.x

Johnson G.K., O.R. Babu, I.P. Vijesh-Kumar, S.J. Eapen y M. Anandaraj. (2016). Interplay of genes in plant–pathogen interactions: In planta expression and docking studies of a beta 1,3 glucanase gene from Piper colubrinum and a glucanase inhibitor gene from Phytophthora capsici. Physiol Mol Biol Plants 22:567–73. DOI:10.1007/s12298-016-0378-7

Kamoun S. (2006). A catalogue of the effector secretome of plant pathogenic oomycetes. Annu. Rev. Phytopathol. 44: 41–60. DOI:10.1146/annurev.phyto.44.070505.143436

Karimi-Jashni M., R. Mehrabi, J. Collemare, C.H. Mesarich y P.J.G.M. de Wit. (2015). The battle in the apoplast: further insights into the roles of proteases and their inhibitors in plant–pathogen interactions. Front. Plant Sci. 6:584. https://doi.org/10.3389/fpls.2015.00584

Kaschani F., M. Shabab, T. Bozkurt, T. Shindo, S. Schornack, C. Gu, M. Ilyas, J. Win, S. Kamoun y R.A.L. van der Hoorn. (2010). An effector-targeted protease contributes to defense against Phytophthora infestans and is under diversifying selection in natural hosts. Plant Physiol. 154:1794–804. DOI: 10.1104/pp.110.158030

Kim Y.T., J. Oh, K.H. Kim, J.Y. Uhm y B.M. Lee. (2009). Isolation and characterization of NgRLK1, a receptor-like kinase of Nicotiana glutinosa that interacts with the elicitin of Phytophthora capsici. Mol Biol Rep. 37: 717-27. DOI: 10.1007/s11033-009-9570-y

Mafurah J.J., H. Ma, M. Zhang, J. Xu, F. He, T. Ye, D. Shen, Y. Chen, N.A. Rajput y D. Dou. (2015). A Virulence Essential CRN Effector of Phytophthora capsici Suppresses Host Defense and Induces Cell Death in Plant Nucleus. PLoS ONE 10: e0127965. DOI: 10.1371/journal.pone.0127965

Panabieres F., J. Amselem, E. Galiana y J.Y. Le Berre. (2005). Gene identification in the oomycete pathogen Phytophthora parasitica during in vitro vegetative growth through expressed sequence tags. Fungal Genet. Biol. 42: 611–23. DOI: 10.1016/j.fgb.2005.03.002

Reyes-Tena A., A. Castro-Rocha, G. Rodríguez-Alvarado, G. Vázquez-Marrufo, ME. Pedraza-Santos, K. Lamour y S.P. Fernández-Pavía. (2019). Virulence phenotypes on chili pepper for Phytoohthora capsici isolates from Michoacán, Mexico. HortScience 54(9)1526-1531. DOI: https://doi.org/10.21273/HORTSCI13964-19

Rose J.K.C., K. Ham, A.G. Darvill y P. Albersheim. (2002). Molecular Cloning and Characterization of Glucanase Inhibitor Proteins: Coevolution of a Counterdefense Mechanism by Plant Pathogens. The Plant Cell 14:1329–45. doi: 10.1105/tpc.002253

Sharpee W.C. y R.A. Dean. (2016). Form and function of fungal and oomycete effectors. Fungal Biology Reviews. 30:62–73. https://doi.org/10.1016/j.fbr.2016.04.001

Silvar C., J.M. Duncan, D.E.L. Cooke, N.A. Williams, J. Díaz y F. Merino. (2005). Development of specific PCR primers for identification and detection of Phytophthora capsici Leon. Eur J Plant Pathol. 112: 43–52. DOI 10.1007/s10658-004-8232-0

Song J., J. Win, M. Tian, S. Schornack, F. Kaschani, M. Ilyas, R.A.L. van der Hoorn y S. Kamoun. (2009). Apoplastic effectors secreted by two unrelated eukaryotic plant pathogens target the tomato defense protease Rcr3. PNAS 106:1654–59. doi: 10.1073/pnas.0809201106.

Stassen J.H.M. y G. van den Ackerveken. (2011). How do oomycete effectors interfere with plant life? Curr Opin Plant Biol. 14:407–14. DOI: 10.1016/j.pbi.2011.05.002

Tian M., E. Huitema, L. da Cunha, T. Torto-Alalibo y S. Kamoun. (2004). A Kazal-like Extracellular Serine Protease Inhibitor from Phytophthora infestans Targets the Tomato Pathogenesis-related Protease P69B. J. Biol. Chem. 279: 26370–77. DOI: 10.1074/jbc.M400941200

Tian M., B. Benedetti y S. Kamoun. (2005). A Second Kazal-Like Protease Inhibitor from Phytophthora infestans Inhibits and Interacts with the Apoplastic Pathogenesis-Related Protease P69B of Tomato. Plant Physiol. 138:1785–93. DOI: 10.1104/pp.105.061226

Tian M., J. Win, J. Song, R. van der Hoorn, E. van der Knaap y S. Kamoun. (2007). A Phytophthora infestans Cystatin-Like Protein Targets a Novel Tomato Papain-Like Apoplastic Protease. Plant Physiol. 143:364–77. DOI: 10.1104/pp.106.090050

Toruño T.Y., I. Stergiopoulos y G. Coaker. (2016). Plant-Pathogen Effectors: Cellular Probes Interfering with Plant Defenses in Spatial and Temporal Manners. Annu Rev Phytopathol. 54:419–41. DOI: 10.1146/annurev-phyto-080615-100204

Vijesh-Kumar I.P., N. Reena, M. Anandaraj, S.J. Eapen, G.K. Johnson y K. Vinitha. (2013). Amplification, Cloning and In silico Prediction of Full Length Elicitin Gene from Phytophthora capsici, the Causal Agent of Foot Rot Disease of Black Pepper. J Plant Pathol Microb. 04: 6–11. DOI: 10.4172/2157-7471.1000181

Wang Y. y Y. Wang. (2018). Phytophthora sojae effectors orchestrate warfare with host immunity. Curr Opin Microbiol. 46:7–13. DOI: 10.1016/j.mib.2018.01.008

Wawra S., R. Belmonte, L. Löbach, M. Saraiva, A. Willems y P. van West. (2012). Secretion, delivery and function of oomycete effector proteins. Curr Opin Microbiol. 15: 685–91. DOI: 10.1016/j.mib.2012.10.008

Zhao L., X. Zhang, X. Zhang, W. Song, X. Li, R. Feng, C. Yang, Z. Huang y C. Zhu. (2018). Crystal structure of the RxLR effector PcRxLR12 from Phytophthora capsici. Biochem. Biophys. Res. Commun. 503:1830–35. DOI:10.1016/j.bbrc.2018.07.121
Published
2025-01-05
How to Cite
Ramírez-Delgado, E., Ancona, V., Frías-Treviño, G. A., Hernández-Mendoza, J. L., García-León, I., & Quiroz-Velásquez, J. D. C. (2025). Identification of Genes Homologous to Protease Inhibitors Present in the Genome of the Pathogenic Oomycete of the Solanaceae Family. Journal of the University of Zulia , 16(45), 43-55. https://doi.org/10.5281/zenodo.14600156