Packaged Reactor Monitoring System for the Treatment of Wastewater containing dyes
Abstract
This paper present the electronic instrumentation of an unconventional biofiltration system, consisting of three downflow aerobic biofilters to control the inflow/outflow of wastewater and monitoring temperature and color variables. Biofilters are used in the removal of Azo-type dyes, used mainly in denim dyeing, which due to their properties are difficult to degrade and are discharged into river waters. Each biofilter was packaged with different materials, peat and perlite, inoculated with acclimatized sludge, to remove color and organic material. The results achieved were to improve the sample collection and analysis procedure carried out in each of the biofilters, integrating TCS230 color sensors, PT100 temperature sensors, solenoid valves that control the influent supplied to each of the biofilters and the graphical interface developed in LabView responsible for displaying the measurements of the physical variables. The advantage of an automated biofiltration system is to have measurements in real time and useful for other studies of different biofilter packaging. In this case, it was observed that the biofilter packed with perlite peat mixture presented greater removal of color and organic material.
Downloads
References
Castro-Peña, L., & Durán-Herrera, J. E. (2014). Degradación y decoloración de agua contaminada con colorantes textiles mediante procesos de oxidación avanzada. Revista Tecnología En Marcha, 27(2), 40. doi.org/10.18845/tm.v27i2.1807
Garzón-Zúñiga, M. A., Buelna, G., & Moeller-Chávez, G. E. (2012). La biofiltración sobre materiales orgánicos, nueva tecnología sustentable para tratar agua residual en pequeñas comunidades e industrias. Tecnologia y Ciencias Del Agua, 3(3), 153–161.
Jaafarzadeh, N., Takdastan, A., Jorfi, S., Ghanbari, F., Ahmadi, M., & Barzegar, G. (2018). The performance study on ultrasonic/Fe3O4/H2O2 for degradation of azo dye and real textile wastewater treatment. Journal of Molecular Liquids, 256(2017), 462–470. doi.org/10.1016/j.molliq.2018.02.047
Jasim, N. A. (2020). Degradation of Direct Blue from Synthetic Wastewater using Electrochemical Oxidation Method. IOP Conference Series: Materials Science and Engineering, 745(1). doi.org/10.1088/1757-899X/745/1/012138
Katheresan, V., Kansedo, J., & Lau, S. Y. (2018). Efficiency of various recent wastewater dye removal methods: A review. In Journal of Environmental Chemical Engineering (Vol. 6, Issue 4, pp. 4676–4697). doi.org/10.1016/j.jece.2018.06.060
Lalnunhlimi, S., & Veenagayathri, K. (2016). Decolorization of azo dyes (Direct Blue 151 and Direct Red 31) by moderately alkaliphilic bacterial consortium. Brazilian Journal of Microbiology, 47(1), 39–46. doi.org/10.1016/j.bjm.2015.11.013
Leson, G., & Winer, A. M. (1991). Biofiltration: An innovative air pollution control technology for voc emissions. Journal of the Air and Waste Management Association, 41(8), 1045–1054. doi.org/10.1080/10473289.1991.10466898
Li, W., Mu, B., & Yang, Y. (2019). Feasibility of industrial-scale treatment of dye wastewater via bio-adsorption technology. Bioresource Technology, 277(January), 157–170. doi.org/10.1016/j.biortech.2019.01.002
Pineda Ayala, D. M., & Durán Herrera, J. E. (2019). Evaluation of oil palm empty fruit bunch wastes as adsorbent for the removal of reactive dyes from aqueous solutions. Ingeniería Investigación y Tecnología, 20(1), 1–9. doi.org/10.22201/fi.25940732e.2019.20n1.008
Premkumar, M. P., Thiruvengadaravi, K. V., Senthil Kumar, P., Nandagopal, J., & Sivanesan, S. (2018). Eco-Friendly Treatment Strategies for Wastewater Containing Dyes and Heavy Metals. Energy, Environment, and Sustainability, 317–360. doi.org/10.1007/978-981-10-7332-8_14
Saggioro, E. M., Oliveira, A. S., Pavesi, T., Maia, C. G., Ferreira, L. F. V., & Moreira, J. C. (2011). Use of titanium dioxide photocatalysis on the remediation of model textile wastewaters containing azo dyes. Molecules, 16(12), 10370–10386. doi.org/10.3390/molecules161210370
Sánchez, L. G. (2007). Decoloración fúngica de efluentes industriales con colorantes azo en sistemas de biofiltración con diferentes empaques orgánicos. Programa de Maestría y Doctorado en Ingeniería, 165.
Vargas Espinoza, M. Y. (2015). Universidad Nacional Autónoma de México. Programa de Maestría y Doctorado en Ingeniería.
Venkata Mohan, S., Chandrasekhar Rao, N., & Karthikeyan, J. (2002). Adsorptive removal of direct azo dye from aqueous phase onto coal based sorbents: A kinetic and mechanistic study. Journal of Hazardous Materials, 90(2), 189–204. doi.org/10.1016/S0304-3894(01)00348-X
Yaseen, D. A., & Scholz, M. (2019). Textile dye wastewater characteristics and constituents of synthetic effluents: a critical review. International Journal of Environmental Science and Technology, 16(2), 1193–1226. doi.org/10.1007/s13762-018-2130-z
Zaruma Arias, P. E., Proal Nájera, J. B., Hernández, I. C., & Salas Ayala, H. I. (2018). Textile Industrial Dyes and optimal wastewater effluents treatments: A short review. Revista de La Facultad de Ciencias Químicas, Instituto Politécnico Nacional, 18, 38–48.
Copyright
The Revista de la Universidad del Zulia declares that it recognizes the rights of the authors of the original works published in it; these works are the intellectual property of their authors. The authors preserve their copyright and share without commercial purposes, according to the license adopted by the journal..
This work is under license:
Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)