Production and synthesis pathways of indole acetic acid in Fusarium oxysporum
Abstract
The fungus Fusarium oxysporum Schltdl is a phytopathogenic agent that is widely distributed throughout the world, attacking annual and perennial crops of various families, such as solanaceae, cucurbits and grasses; and in advanced infection the appearance of the plants is wilting and death. F oxysporum can produce indole acetic acid, which may be involved in the pathogenic process of this fungus on its hosts. In this case, using an isolated strain of blackberry rhizosphere, the synthesis pathways of indole acetic acid (IAA) were studied, using LB culture medium with or without tryptophan, the main cofactor in this type of study. The objective of the study is to determine if Fusarium oxysporum strain Poxy05 is capable of producing IAA and the pathways it uses to do so. For this, commercial standards were applied for the detection by HPLC of the key compounds that intervene in the IAA synthesis pathways. The results show that this strain produces IAA via the indole acetamide (IAM) pathway, a Tryptophan-Dependent pathway. The compounds involved in the Tryptophan-Independent pathways were not detected, so it is estimated that IAM is the only pathway used by the fungus in the synthesis of IAA.
Downloads
References
Bin Junaidi A R & Hasnul Bolhassan, M. (2017). Screening of indol acetic acid (IAA) production by endophytic Fusarium oxysporum isolated from Phyllanthus niruri. Borneo Journal of Resourse Science and Technology. 7(1): 56-59.
Bunsangiam S, Sakpuntoon V, Srisuk N, Ohashi T, Fujiyama K, Limtong S. (2019). Biosynthetic Pathway of Indole-3-Acetic Acid in Basidiomycetous Yeast Rhodosporidiobolus fluvialis. Mycobiology. 15;47(3):292-300. doi: 10.1080/12298093.2019.1638672. PMID: 31565465; PMCID: PMC6758620.
Carreño-López, R; Campos-Reales, N; Elmerich, C & Baca, BE. (2000). Physiological evidence for differently regulated tryptophan-dependent pathway for índole -3-acetic acid synthesis in Azospirillum brasilense. Molecular and General Genetics MGG 264: 521-530.
Chung KR; Shilts T; Erturk U; Timmer, LW & Ueng PP. (2003). Indole derivatives produced by the fungus Colletotrichum acutatum causing lime anthracnose and postbloom fruit drop of citrus. FEMS Microbiol Lett. 226: 23-30.
Di Pietro, A; Marta P Madrid; Zaira Caracuel; Jesus Delgado-Jarana & Isabel G Roncero. Fusarium oxysporum: exploring the molecular arsenal of vascular wilt fungus. Molecular plant Pathology. 4(5): 315-325.
Forero-Reyes, CM; Alvarado-Fernandez, AM; Ceballos-Rojas, AM; Gonzalez-Carmona, LC; Linares-Linares, MY; Castañeda-Salazar, R; Pulido-Villamarín, A; Góngora-Medina, ME; Cortés-Vecino, JA & Rodríguez-Bocanegra, MX. (2018). Evaluación de la capacidad patogénica de Fusarium spp en modelos vegetal y murino. Revista Argentina de Microbiología. 50(1): 90-96.
Ghosh, AC & Basu P. (2002). Growth behaviour and bioproduction of índole acetic by a Rhizobium sp isolated from root nodules of a leguminous tree Dalbergia lanceolaria. Indian J Exp Biol. 40(7): 796-801.
Glickmann, E; Gardan, L; Jacquet, S; Hussain, S; Elasri, M; Petit, A; & Dessaux, Y. (1998). Auxin production is a common feature of most pathovars of Psuedomonas siringe. Molecular Plant Microbe Interactions. 11(2): 156-162. DOI 10.1094MPMI.1998.11.2.156.
González-Lamothe, R., El Oirdi, M., Brisson, N., & Bouarab, K. (2012). The Conjugated Auxin Indole-3-Acetic Acid–Aspartic Acid Promotes Plant Disease Development. The Plant Cell, 24(2), 762-777.
Gurjar, G; Barve, M Gin, A / Gupta, V. (2009). Identification of Indian pathogenic races of Fusarium oxysporum f. sp ciceris with gene specific, ITS and random markers. Mycologia 10(4): 484-495.
Guruprasad B Kulkarni; Shishailnath S Sajjan & TB Karegoudar. (2011). Pathogenicity of índole acetic acid producing fungus Fusarium delphinoides strain GPK towards chickpea and pigeon pea. European Journal of Plant Pahtology. 131(3): 355-369.
Harikrishnan, H., Shanmugaiah, V., & Balasubramanian, N. (2014). Optimization for production of Indole acetic acid (IAA) by plant growth promoting Streptomyces sp VSMGT1014 isolated from rice rhizosphere. Int J Curr Microbiol Appl Sci, 3(8), 158-71.
Hartman, A., Campo, RJ, Souza, EM & Pedrosa, FO. (1983). Isolation and caracterization of Azospirillum mutants excreting high amounts of índole acetic acid. Canadian Journal of Microbiology. 29(8): 916-923.
Hasan, HA. (2002). Gibberellin and auxin-indole production by plant root-fungi and their biosynthesis under salinity-calcium interaction. Acta Microbiol. Immunol Hung. 49(1): 105-118.
Hernández-Mendoza J. L., Quiroz-Velázquez J. D., Díaz-Franco A., García-Olivares J. G., Bustamante-Dávila A. J. and Gill-Langarica H. R. 2012. Detection of metabolites in Flor de Mayo common beans (Phaseolus vulgaris L.) and their response to inoculation with Trichoderma harzianum. African Journal of Biotechnology. Vol. 11(55): 11767-11771.
Hernández-Mendoza, J. L., J. D. Quiroz-Velásquez, V. R. Moreno-Medina y N. Mayek-Pérez. 2008. Biosíntesis de ácido antranílico y ácido indolacético a partir de triptófano en una cepa de Azospirillum brasilense nativa de Tamaulipas, México. Avances en Investigación Agropecuaria 12(1): 57-66.
Howden, A. J., C. Jill Harrison y G. M. Preston. 2009. A conserved mechanism for nitrile metabolism in bacteria and plants. The Plant Journal 57(2): 243-253.
Idris, EE, Iglesias, DJ, Talon, M & Borris, R. (2007). Tryptophan dependent production of índole-3-acetic acid (IAA) effects leve lof plant growth promotion by Bacillus amyloliquefaciens FZB42. Molecular Plant Microbe Interactions. 20(6): 619-623.
Lee S. Flores-Encarnacion M. Contreras-Zentella M. García-Flores L. Escamilla J. Kennedy C. (2004). Indole-3-acetic acid biosynthesis is deficient in Glucanacetobacter diazotrophicus strains with mutations in cytochrome c biogenesis. Genes Journal of Bacteriology. 186(16): 5384-5391. Doi:10.1128/JB.186.5384-5391.2004.
Leyva-Mir, SG; Vega-Portillo, HE; Villaseñor-Mir, HE; Tlapal-Bolaños, B; Vargas-Hernandez, M; Camacho-Tapia, M & Tovar-Pedraza, J. (2017). Caracterización de especies de Fusarium causantes de pudrición de raíz del trigo en el Bajío, Mexico. Chilean J Agric Anim Sci., ex Agro - Ciencia. 33(2): 142-151.
Li M, Guo R, Yu F, Chen X, Zhao H, Li H, Wu J. (2018). Indole-3-Acetic Acid Biosynthesis Pathways in the Plant-Beneficial Bacterium Arthrobacter pascens ZZ21. International Journal of Molecular Sciences. 19(2):443. https://doi.org/10.3390/ijms19020443
Luo, Kun & Rocheleau, Helene Peng, Fei; Zheng, You-Liang; Zhao, Hui-Yan & Ouelleth Therese. (2006). Indole-3-acetic acid in Fusarium graminearum: Identification of biosynthetic Pathways and characterization of physiological effects. Fungal Biology. 120.10.1016/j.funbio.2016.06.002.
Mano Yoshihiro y Keiichirou Nemoto. (2012). The pathway of auxin biosynthesis in plants, Journal of Experimental Botany, Volume 63(8)2853–2872, https://doi.org/10.1093/jxb/ers091
Mano, Y., K. Nemoto, M. Suzuki, H. Seki, I. Fujii y T. Muranaka. (2010). The AMI1 gene family: indole-3-acetamide hydrolase functions in auxin biosynthesis in plants. Journal of experimental botany 61(1): 25-32.
Maymon, M; Noa Sela, Uri, Shpatz, Navot Galpaz / Stanley Freeman. (2020). The origin and current situation of Fusarium oxysporum f. sp cubense Tropical race 4 in Israel and the Middle East. Scientific Reports 10: 1590. https;//doi.org/10.1038/s41598-020-58378-9.
Mohite B (2013) Isolation and characterization of indole acetic acid (IAA) producing bacteria from rhizospheric soil and its effect on plant growth. J Soil Sci Plant Nut 13:638–649. http://dx.doi.org/10.4067/S0718-95162013005000051.
Naturatat, P; Srisuk, N; Arunrattiyakorn, P & Limtong S. (2016). Indole-3-acetic acid biosynthesis Pathways in the basidiomycetous yeast Rhodosporidium paludigenum. Arch. Microbiol. 198(5): 429-437. DOI: 10.1007/s00203-016-1202.
Princen, E; Costacurta, A; Michiels, K; Vanderleyden, J & Van Onckelen, H. (1993). Azospirillum brasilense índole -3-acetic acid biosynthesis. Evidence for a non-tryptophan dependent pathway. Mol. Plant Microbe Interact. 6, 609.
Reineke, G; Heinze, B; Schirawski J; Kahmann, R et al., (2008). Indole-3-acetic acid (AAI) biosynthesis in the smut fungus Ustilago maydis and its relevance for increased IAA levels in infected tissue and host tumor formation. Mol. Plant Pathol. 9: 339-355.
Retana, K; Ramírez-Coché, JA; Blanco-Meneses, M. (2018). Caracterización morfológica y molecular de Fusarium oxysporum F SP Apii asociado a la marchitez del apio en Costa Rica. Agronomía costarricense. 42(1). DOI: 10.15517/rac.v42i1.32199.
Sant’ Anna, F.H., L.G. Almeida, R. Cecagno, L. A. Reulon, F. M. Siqueira, M. R. Machado y I. S. Schrank. (2011). Genomic in sights in to diversity of the plant growth-promoting bacterium Azospirillum brasilense. BMC Genomic. 12(1):409.
Spaepen S & Vanderleyden, J. (2011). Auxin and plant-microbe Interactions. Cold Spring Harbor Perspectives in Biology. 3(4): DOI 10.1101./cshperspect a0011438.
Spaepen, S; Vanderleyden, J & Remasn, R. (2007). Indole-3-acetic acid in microbial and microorganism plant signaling. FEMS Microbial reviews. 31(4): 425-448.
Srivastava, Sahai. 1964. Investigations on the occurence and biosynthesis of indole pyruvic acid in plant tissues and bacteria. Plant Physiology. 39(5): 781-785.
Sun, PF; Fang, WT; Shin, LY; Wei, JY, Fu, SF, et al. (2014). Indole-3-acetic acid producing yeast in the phylosphere ef the carnivorous plant Drosera indica L. Plos One. 9(12): e114196. DOI: 10.1371/jouranl.pone.0114196.
Tao, Y., J. Ferrer, K. Ljung, F. Pojer, F. Hong, J. Long y Y. Cheng. (2008). Rapid synthesis of auxin via a new tryptophan-dependent pathway is required for shade avoidance in plants. Cell 133(1): 164-176.
Teale, WD, Paponov, IA & Palme, K. (2006). Auxin in action Signaling, transport and the control of plant growth and development. Nat. Rev Mol. Cell Biol. 7: 847-859.
Uribe-Bueno Mariana,Villa-Castro, L., N. Mayek-Pérez, J. García-Olivares y J. Hernández- Mendoza. (2014). Efecto de la inoculación en maíz con cepas nativas de Azospirillum sp. Avances en Investigación Agropecuaria 18(1): 33-38
Wang B, J. Chu, T. Yu, Q. Xu, X. Sun, J. Yuan, G. Xiong, G. Wang, Y. Wang, J. Li. (2015). Tryptophan-Independent auxin biosynthesis contributes to early embryogenesis in Arabidopsis. Proc. Natl. Acad. Sci. 112(15):4821-4826. 10.1073/pnas.1503998112
Woodward, AW & Bartel, B. (2005). Auxin regulation, action, and interaction. Ann. Bot. 95:707- 735.
Zakharova, Elena A, Alexander A. Shcherbakov,Vitaly V. Brudnik,Nataliya G. Skripko,Nail Sh. Bulkhin,Vladimir V. Ignatov. (1999). Biosynthesis of indole-3-acetic acid in Azospirillum brasilense. European Journal of Biochemistry 259(3): 572-576. https://doi.org/10.1046/j.1432- 1327.1999.00033.x.
Zhang Bi-Xian, Pei-Shan Li, Ying-Ying Wang, Jia-Jun Wang, Xiu-Lin Liu, Xue-Yang Wang and Xiao-Mei Hu. (2021). Characterization and synthesis of indole-3-acetic acid in plant growth promoting Enterobacter sp. RSC Adv 31601. Doi: 10.1039/d1ra05659j.
Zheng Si-Jun, García-Bastidas Fernando A., Li Xundong, Zeng Li, Bai Tingting, Xu Shengtao, Yin Kesuo, Li Hongxiang, Fu Gang, Yu Yanchun, Yang Liu, Nguyen Huy Chung, Douangboupha Bounneuang, Khaing Aye Aye, Drenth Andre, Seidl Michael F., Meijer Harold J. G., Kema Gert H. J. (2013). New geographical insights of the latest expansion of Fusarium oxysporum f. sp cubense tropical race 4 into the greater Mekong subregion. Front. Plant Sci. 9: 457. DOI=10.3389/fpls.2018.00457.
Copyright
The Revista de la Universidad del Zulia declares that it recognizes the rights of the authors of the original works published in it; these works are the intellectual property of their authors. The authors preserve their copyright and share without commercial purposes, according to the license adopted by the journal..
This work is under license:
Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)