Increased efficiency of a fuel cell using h-BN electrodes and Teflon polymer electrolyte [-C2F4-]n
Abstract
Graphene and h-BN have been theoretically simulated for hydrogen storage and oxygen diffusion in a single fuel cell unit. Obviously, the efficiency of the PEM hydrogen fuel cells was significantly related to the amount of H2 concentration, the water activities in catalyst substrates and the polymer of the electrolyte membranes, the temperature and the dependence of such variables in the direction of the fuel and air currents between the anode path and the cathode. The single PEM parameter has been estimated and the results show greater fuel cell efficiency using graphene sheets and h-BN. Maximum efficiency is observed with the stoichiometry of the 5H2, 5O2 and 3 C2F4 molecules during adsorption.
Downloads
References
Besler, B.H., Merz, K.M., Kollman, P.A. (1990). Atomic charges derived from semi empirical methods J. comp. Chem (11): 431-439, DOI: 10.1002/jcc.540110404
Borup R. (2007). Scientific aspects of polymer electrolyte fuel cell durability and degradation. CHEMICAL REVIEWS, 107(10), 3904-3951.
Bosco , A .D. P., Fronk, M .H. (2000). Fuel cell flooding detection and correction, US Patent 6,103,409.
Chirlian, L.E., Francl, M.M. (1987). Atomic charges derived from electrostatic potentials: A detailed study. J.comp.chem (8): 894-905, DOI: 10.1002/jcc.540080616
Ciureanu, M., (2004). Effects of nafion dehydration in pem fuel cells. Journal of Applied Electrochemistry, 34(7):705-714
Cruz-Manzo, S., Chen, R., Rama P. (2013). Study of current distribution and oxygen diffusion in the fuel cell cathode catalyst layer through electrochemical impedance spectroscopy. International Journal of Hydrogen Energy, 38(3), 1702- 1713
De Bruijn, FA., Dam, VAT., (2008). Janssen GJM. Review: Durability and degradation issues of PEM fuel cell components. Fuel Cells, 8(3), 22
Dutta, S., Shimpalee, S., Van, Zee J W. (2000). Three-dimensional numerical simulation of straight channel pem fuel cells. Journal of Applied Electrochemistry, 2000, 30(2):135-146
Futerko, P., Hsing, I., (2000). Two-dimensional finite-element method study of the resistance of membranes in polymer electrolyte fuel cells, Electrochimica Acta, 45(11):1741-1751
Gurau V. (1998). Two-dimensional model for proton exchange membrane fuel cells. AIChE Journal, 44(11):2410- 2422
Karimi, G. (2011). Along-channel flooding prediction of polymer electrolyte membrane fuel cells. International Journal of Energy Research, 35(10):883-896
Kazmi, I. H., Bhatti, A. I., Iqbal, S. A. (2009). nonlinear observer for pem fuel cell system.Multitopic Conference, IEEE 13th International, pages 1-6
Larminie, J., Dicks, A. (2003). Fuel Cell Systems Explained. J. Wiley
Le ,Canut J. , Abouatallah, R. M., Harrington, D. A., (2006). Detection of membrane drying, fuel cell flooding, and anode catalyst poisoning on pemfc stacks by electrochemical impedance spectroscopy, 153(5): 857-864
Litster, S., McLean, G. (2004). PEM fuel cell electrodes. Journal of Power Sources, 130(1):61, 76
Mollaamin, F. , Pham, T., Dang, D. , Monajjemi, M., Mau Dang, C. (2019). Modelling and Controlling of ion transport rate efficiency in Proton exchange membrane (PEMFC), alkaline (AFC), direct methanol (DMFC), phosphoric acid (PAFC), direct forming acid (DFAFC) and direct carbon (DCFC) fuel cells, Biointerface Research in Applied Chemistry, 9 (4), 2019, 4050 – 4059.
Pasaogullari, U., Wang, C. (2005). Two-phase modeling and flooding prediction of polymer electrolyte fuel cells. Journal of The Electrochemical Society, 152(2): 380-390
Perdew, J. P, Burke, K. (1996). Ernzerhof, Generalized Gradient Approximation Made Simple. Phys. Rev. Lett, (77): 3865-3868
Pukrushpan, J .T., Peng, H., Stefanopoulou, A .G. (2004). Control-oriented modeling and analysis for automotive fuel cell systems. Journal of Dynamic Systems, Measurement and Control, 126:14
Rowe, A., Li, X. (2001). Mathematical modeling of proton exchange membrane fuel cells, Journal of Power Sources, 102(1):82-96
Schmidt, M.W., Baldridge, k.k., Boatz, J.A., Elbert, S.T., Gordon, Ms., Jensen, JH., Koseki, S., Matsunaga, N., Nguyen, K.A et al. (2004). General atomic and molecular electronic structure system. J Compt chem , 14(11): 1347–1363
Schmittinger, W., Vahidi, A., (2008). A review of the main parameters influencing longterm performance and durability of PEM fuel cells. Journal of Power Sources, 180(1):1- 14
Siegel, C. (2008). Review of computational heat and mass transfer modeling in polymerelectrolyte-membrane (pem) fuel cells. Energy, 33(9):1331-1352
Tao, W. Q., Min, C. H., Liu, X. L., He, L. Y., Yin, B. H., Jiang, W. (2006). Parameter sensitivity examination and discussion of PEM fuel cell simulation model validation: Part i. current status of modeling research and model development. Journal of Power Sources, 160(1):359-373
Wang, Z. H., Wang, C .Y., Chen, K. S., (2001). Two-phase flow and transport in the air cathode of proton exchange membrane fuel cells. Journal of Power Sources, 94(1):40- 50
Yao, K. Z., Karan, K., McAuley, K. B., Oosthuizen, P., Peppley, B., Xie, T., (2004). A review of mathematical models for hydrogen and direct methanol polymer electrolyte membrane fuel cells. Fuel Cells, 4(1), 3-29
Zawodzinski, T .A, Derouin ,C., Radzinski, S., Sherman, R. J., Smith, V. T., Springer, T. E., Gottesfeld ,S.’ (1993). Water uptake by and transport through nafion membranes, 140(4):1041-1047.
Zhao, Y., Truhlar, DG. (2008). The M06 suite of density functional for main group thermochemistry, thermochemical kinetics, non-covalent interactions, excited states, and transition elements: two new functional and systematic testing of four M06-class functional and 12 other functional. Theor Chem Account 2008; 120:215–241
Copyright
The Revista de la Universidad del Zulia declares that it recognizes the rights of the authors of the original works published in it; these works are the intellectual property of their authors. The authors preserve their copyright and share without commercial purposes, according to the license adopted by the journal..
This work is under license:
Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)