El efecto de la hipotermia sobre el estado del sistema prooxidante-antioxidante de las plantas

Palabras clave: bioquímica; metabolismo; enzimas; vitaminas; enfriamiento; congelación

Resumen

Objetivo de la investigación: identificar cambios en el valor de los indicadores del estado del sistema prooxidante-antioxidante (PAS) en los tejidos de partes comestibles de plantas agrícolas, bajo la influencia de cambios de temperatura. Metodología: la determinación cuantitativa de indicadores del estado de PAS se realizó en muestras de tejido de partes comestibles de las siguientes plantas: Solánum lycopérsicum L., Сucumis sativus L., Capsicum annuum L., Solanum melongena L., Solanum tuberosum L., Allium sativum L ., Allium cepa L., Daucus carota L., Beta vulgaris L., Cucurbita pepo var. Giraumontia L. Se determinó la concentración de radical anión superóxido (• O2-), productos activos TBA, actividad superóxido dismutasa (SOD), catalasa, concentración de ácido ascórbico (AA), glutatión (GSH). Los resultados de la investigación muestran que la hipotermia activa ambas partes del PAS. Sin embargo, el enfriamiento va acompañado de una protección antioxidante enzimática (AO) y de bajo peso molecular más potente. La investigación de AO se puede dividir según el grado de reducción del valor protector en hipotermia en las siguientes series: SOD, catalasa, GSH, AA. El más resistente en términos de cambios en PAS a hipotermia es Solanum tuberosum L., Allium sativum L., Beta vulgaris L .; el menos resistente es Capsicum annuum L. y Solánum lycopérsicum L. Los órganos generativos de las plantas son menos resistentes a la hipotermia que los vegetativos. Consecuencias prácticas. Como resultado del análisis bioquímico realizado, se establece qué método de almacenamiento de productos vegetales es más efectivo en términos de conservación de la actividad AO: enfriamiento o congelación.

Descargas

La descarga de datos todavía no está disponible.

Biografía del autor/a

Mariia Bobrova , Departamento de Biología y Métodos de Enseñanza de la Universidad Pedagógica Estatal Central de Ucrania Volodymyr Vynnychenko, Ucrania

Profesor titular del Departamento de Biología y Métodos de Enseñanza de la Universidad Pedagógica Estatal Central de Ucrania Volodymyr Vynnychenko, Ucrania

Olena Holodaieva , Departamento de Química General y Biológica # 2 Universidad Médica Nacional de Donetsk, Ucrania

Profesor asociado del Departamento de Química General y Biológica # 2 Universidad Médica Nacional de Donetsk, Ucrania

Svitlana Koval , Departamento de Disciplinas Fundamentales de la Universidad Internacional Europea, Ucrania

Profesor titular del Departamento de Disciplinas Fundamentales de la Universidad Internacional Europea, Ucrania

Olha Tsviakh , Departamento de Química de la V.O. Universidad Nacional Sukhomlynskyi Mykolaiv, Ucrania

Profesor Titular del Departamento de Química de la V.O. Universidad Nacional Sukhomlynskyi Mykolaiv, Ucrania

Olena Kucher , Departamento de Química de la V.O. Universidad Nacional Sukhomlynskyi Mykolaiv, Ucrania.

Profesor Titular del Departamento de Química de la V.O. Universidad Nacional Sukhomlynskyi Mykolaiv, Ucrania.

Citas

Apel K., Hirt Н. (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Рlant Biol. Vol. 55. P. 373 – 399. https://doi.org/10.1146/annurev.arplant.55.031903.141701

Awasthi R., Bhandari K., Nayyar H. (2015) Temperature stress and redox homeostasis in agricultural crops. Front. Environ. Sci. V. 3:11. https://doi.org/10.3389/fenvs.2015.00011

Bhattacharjee S. (2005). Reactive oxygen species and oxidative burst: roles in stress, senescence and signal transduction in plants. Curr. Sci. 89, 1113–1121. [Google Scholar]

Вerwal M.K., Ram C. (2018) Superoxide Dismutase: A stable biochemical marker for abiotic stress tolerance in higher plants. Open access peer-reviewed chapter. DOI: 10.5772/intechopen.82079

Bobrova, M., Holodaieva, O., Arkushyna, H., Larycheva, O. y Tsviakh, O. (2020). The value of the prooxidant-antioxidant system in ensuring the immunity of plants. Revista de la Universidad del Zulia. 11, 30 (jul. 2020), 237-266. DOI:https://doi.org/10.46925//rdluz.30.17.

Dat J.F., Vandenabeele S., Vranova E. et al. (2000) Dual action of the active oxygen species during plant stress responses // Cell. Mol. Life Sci. V. 57. P. 779-795.

Dyachenko L.F., Totskiy V.N., Fait V.I., Toptikov V.A. (2007) Ekspressivnost' nekotorykh gen-enzimnykh sistem v prorostkakh, razlichayushchikhsya po genam Vrd liniy ozimoy myagkoy pshenitsy v protsesse zakalivaniya [Expressiveness of some gene-enzyme systems in seedlings differing in the Vrd genes of winter bread wheat lines during hardening]. Visn. Odesk. nat. un-tu. Biology. 12 (5). 103-111. (in Russian).

Estela Urbina, R., Ríos Campos, C., Santamaría Baldera, N., Gutiérrez Valverde, K., & Aguirre Zaquinaula, I. (2020). Relación entre el comportamiento del viento y la radiación solar en la ciudad de Bagua, Perú (de marzo a octubre, 2019). Revista Latinoamericana De Difusión Científica // ISSN 2711-0494 (En Linea), 2(2), 22-31. https://doi.org/10.38186/difcie.22.04

Foyer CH, Noctor G. (2005). Oxidant and antioxidant signaling in plants: A re-evaluation of the concept of oxidative stress in a physiological context. Plant Cell Environ. 28:1056–107134. https://doi.org/10.1111/j.1365-3040.2005.01327.x

Galiba G., Vanková R., Irma Tari, Bánfalvi Z., Poór P., Dobrev P., Boldizsár Á., Vágújfalvi A., Kocsy G. (2013) Hormones, NO, antioxidants and metabolites as key players in plant cold acclimation. Plant and Microbe Adaptations to Cold in a Changing World / Eds. R. Imai, M. Yoshida, N.Matsumoto. New York: Springer Science+Business Media, P. 73-88. DOI: 10.1007/978-1-4614-8253-6_7

Gill, S. S., Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem. 48, 909–930. doi: 10.1016/j.plaphy.2010.08.016

Hasanuzzaman M., Nahar K., Anee T.I., Fujita M. (2017) Glutathione in plants: Biosynthesis and physiological role in environmental stress tolerance. PMBP. 23:249–268. doi: 10.1007/s12298-017-0422-2.

Hasanuzzaman М. M. H. M., Borhannuddin B. T. I. А, Khursheda P., Kamrun N., Jubayer A. M., Masayuki F. (2019) Regulation of Ascorbate-Glutathione Pathway in Mitigating Oxidative Damage in Plants under Abiotic Stress. Antioxidants (Basel) Sep; 8(9): 384. doi: 10.3390/antiox8090384.

Himalov F.R., Chemeris A.V., Vakhitov V.A. (2004) On the perception of a cold signal by a plant. Uspekhi sovrem. biology. 124 (2). 185-196.

Huang M., Guo Z. (2005) Responses of antioxidant system to chilling stress in two rice cultivars differing in sensitivity. Plant Biol. V. 49. P. 81-84. DOI: 10.1007/s00000-005-1084-3

Ignatenko A.A., Repkina N. , Titov A.F., Talanova V.V. 2016. The response of cucumber plants to low temperature impacts of varying intensity. Trudy Karelsk. Nauchn. Tsentra RAN. 11 : 57-67. https://doi.org/10.17076/eb440

Janda T., Szalai G., Leskó K., Yordanova R., Apostol S., Popova L.P. 2007. Factors contributing to enhanced freezing tolerance in wheat during frost hardening in the light. Phytochem. 68. : 1674-1682.

https://doi.org/10.1016/j.phytochem.2007.04.012

Kolesnichenko A.V., Voinikov V.K. (2003) Proteins of low temperature stress in plants. Irkutsk: Art Press. 196 p.

Kolupaev Y. E. (2007) Aktyvnye formy kysloroda v rastenyyakh pry deystvyy stressorov: obrazovanye y vozmozhnye funktsyy [Active forms of oxygen in plants under the action of stressors: formation and possible functions] Visnyk Kharkivsʹkoho natsionalʹnoho ahrarnoho universytetu. Seriya: Biolohiya. 3, 6-26. (in Russian).

Kolupaev Yu.E., Karpets Yu.V. Reactive oxygen species, antioxidants and plants resistance to influence of stressors. Kyiv: Logos, 2019. 277 p.

Kolupaev Yu.E., Karpets Yu.V. (2009) Reactive oxygen species during plant adaptation to stress temperatures // Physiology and biochemistry cult. plants. 41 (2). 95-108.

Kolupaev Yu.Ye. (2001) Plant stress responses: molecular cell level. H. 171 p.

Kolupaev Yu.Ye., Karpets Yu.V. (2010). Formation of plants adaptive reactions to abiotic stressors influence. Kyiv : 350 p.

Kolupayev Yu.Ye., Trunova T.I. (1992) Osobennosti metabolizma i zashchitnyye funktsii uglevodov rasteniy v usloviyakh stressov roslyn [Peculiarities of metabolism and protective functions of plant carbohydrates under stress conditions]. Fiziologiya i biokhimiya kul't. rasteniy, 24, № 6. 523-533. (in Russian).

Kordyum E.L., Sytnik K.M., Baranenko V.V. et al. (2003) Cellular mechanisms of plant adaptation to the adverse effects of environmental factors in vivo. Kiev: Naukova Dumka. 277 p.

Kumar S., Malik J., Thakur P., Kaistha S., Sharma K.D., Upadhyaya H.D. (2011) Growth and metabolic responses of contrasting chickpea (Cicer arietinum L.) genotypes to chilling stress at reproductive phase. Acta Physiol. Plant. V. 33. P. 779-787. DOI 10.1007/s11738-010-0602-y

Lukatkina A.S. (2002) Cold damage to thermophilic plants and oxidative stress. Saransk: Publishing house of Mordovian University. 208 p.

Luo Y., Tang H., Zhang Y. 2011. Production of reactive oxygen species and antioxidant metabolism about strawberry leaves to low temperatures. J. Agr. Sci. 3 : 89-96. https://doi.org/10.5539/jas.v3n2p89

Major P.S., Zakharova V.P., Velykozhon L.G. 2011. Activity of some antioxidant enzymes in wheat plants under natural conditions of hardening. Fiziol. i Biokhim. Kult. Rast. 43(6) : 507-512.

Pacheco J. H. L., M. A. Carballo, and M. E. Gonsebatt, (2018). “Antioxidants against environmental factor-induced oxidative stress,” in Nutritional Antioxidant Therapies: Treatments and Perspectives, K. H. Al-Gubory, Ed., vol. 8, pp. 189–215, Springer, Cham, Switzerland. https://doi.org/10.1007/978-3-319-67625-8

Piotrovskii, M.S., Shevyreva, T.A., Zhestkova, I.M. and Trofimova, M.S. (2011) Activation of plasmalemmal NADPH oxidase in etiolated maize seedlings exposed to chilling temperatures. Russian Journal of Plant Physiology: a Comprehensive Russian Journal on Modern Phytophysiology, vol. 58, no. 2, pp. 290-298. http://dx.doi.org/10.1134/S1021443711020154.

Radyuk M.S., Domanskaya I.N., ShcherbakovR.A., Shalygo N.V. 2009. Effect of low above-zero temperature on the content of low-molecular antioxidants and activities of antioxidant enzymes in green barley leaves. Russ. J. Plant Physiol. 56(2) : 175-180. https://doi.org/10.1134/S1021443709020058

Scandalios J.G. (2005) Oxidative stress: molecular perception and transduction of signals triggering antioxidant gene defenses. Braz. J. Med. Biol. Res. V. 38. P. 995-1014. DOI: 10.1590/s0100-879x2005000700003

Scandalios J.G. 2002. The rise of ROS. Trends Biochem. Sci. 27 : 483-486. https://doi.org/10.1016/S0968-0004(02)02170-9

Shao H.B., Chu L.Y., Shao M.A., Jaleel C.A., Mi H.M. (2008) Higher plant antioxidants and redox signaling under environmental stresses. C R Biol. 331:433–41. https://doi.org/10.1016/j.crvi.2008.03.011

Smirnoff N. (2005) Antioxidants and reactive oxygen species in plants. Blackwell Publishing, NY.

Suzuki N, Koussevitzky S, Mittler R, Miller G. (2012) ROS and redox signalling in the response of plants to abiotic stress. Plant Cell Environ. 35:259–70. https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1365-3040.2011.02336.x

Szalai G, Kellos T, Galiba G, Kocsy G. (2009) Glutathione as an antioxidant and regulatory molecule in plants under abiotic stress conditions. J Plant Growth Regul. 28:66–80. https://link.springer.com/article/10.1007/s00344-008-9075-2

Voinikov V.K. (2013) Energy and information systems of plant cells in hypothermia. Novosibirsk: Nauka, 212 p.

Publicado
2021-05-05
Cómo citar
Bobrova , M., Holodaieva , O., Koval , S., Tsviakh , O., & Kucher , O. (2021). El efecto de la hipotermia sobre el estado del sistema prooxidante-antioxidante de las plantas. Revista De La Universidad Del Zulia, 12(33), 82-101. https://doi.org/10.46925//rdluz.33.07