The value of the prooxidant-antioxidant system in ensuring the immunity of plants
Resumen
Aim of the research: to identify changes in the state of the prooxidant-antioxidant system in the organs of different plant varieties, depending on their level of resistance to disease. The subject of the research is the role of individual components of the prooxidant-antioxidant system in ensuring plant resistance to disease. Methodology. Quantitative determination of PAS status was performed on onion tissue samples taken from the following varieties: "Globus" (high-resistant variety), "Rainbow" (medium-resistant variety) and "Donetsk Golden" ( low-resistant variety). For biochemical analysis, tissues from the top of the leaf, the middle of the leaf, the scales of the onion-turnip, stem, flower, roots, and seeds were used. The concentration of superoxide anion radical, TBA-active products, superoxide dismutase activity, catalase, GSH-peroxidase, the concentration of ascorbic acid, glutathione, cytochrome oxidase activity were determined. The results of the research show that іn the tissues of photosynthetic vegetative organs of onions, there is an increase in both parts of the prooxidant-antioxidant system; in tissues that are not capable of photoproduction, there is an advantage of the antioxidant link in accordance with the increased resistance of the variety to disease. Initiation of germination processes enhances the activity of both parts of the prooxidant-antioxidant system and is highest in flower cells. Onion seed tissues, which are at rest, have the advantage of a prooxidant link and an increase in the concentration of low molecular weight antioxidants. Practical consequences. As a result of the correlation analysis of the studied indicators, the presence of a close relationship between the concentration of TBA-active products and the activity of cytochrome oxidase and superoxide dismutase, ascorbate with glutathione was established.
Descargas
Citas
Apel K., Hirt Н. (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Рlant Biol. Vol. 55. P. 373 – 399. https://doi.org/10.1146/annurev.arplant.55.031903.141701
Aver'yanov A.A. (1991) Aktivnyye formy kisloroda i immunitet rasteniy [Active forms of oxygen and plant immunity] Uspekhi sovrem. biologii. 111, 5, 722–737. (in Russian).
Baiano A., del Nobile M.A. (2015) Antioxidant compounds from vegetable matrices: Biosynthesis, occurrence, and extraction systems. Crit. Rev. Food Sci. Nutr.;56:2053–2068. doi: 10.1080/10408398.2013.812059.
Dmytriyev O.P., Kravchuk Z.M. (2005) Aktyvni formy kysnyu ta imunitet roslyn [Active forms of oxygen and immunity of plants]. Tsytolohyya y henetyka, 39 (4), 64–75. (in Ukrainian).
D'yakov Y.T., Ozeretskovskaya O.L., Dzhavakhiya V.G. (2002) Obshchaya i molekulyarnaya fitopatologiya. Mir, Moskva. (in Russian).
Foyer CH, Noctor G. (2005). Oxidant and antioxidant signaling in plants: A re-evaluation of the concept of oxidative stress in a physiological context.Plant Cell Environ. 28:1056–107134. https://doi.org/10.1111/j.1365-3040.2005.01327.x
Gill, S. S., Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem. 48, 909–930. doi: 10.1016/j.plaphy.2010.08.016
Halliwell B. Reactive species and antioxidants. Redox biology is fundamental theme of aerobic life. Plant Physiol. 2006;141:312–322. doi: 10.1104/pp.106.077073.
Hasanuzzaman M., Nahar K., Anee T.I., Fujita M. (2017) Glutathione in plants: Biosynthesis and physiological role in environmental stress tolerance. PMBP. 23:249–268. doi: 10.1007/s12298-017-0422-2.
Hasanuzzaman М. M. H. M., Borhannuddin B. T. I. А, Khursheda P., Kamrun N., Jubayer A. M., Masayuki F. (2019) Regulation of Ascorbate-Glutathione Pathway in Mitigating Oxidative Damage in Plants under Abiotic Stress. Antioxidants (Basel) Sep; 8(9): 384. doi: 10.3390/antiox8090384.
Janků М, Luhová L, Petřivalský М (2019). On the Origin and Fate of Reactive Oxygen Species in Plant Cell Compartments. Antioxidants (Basel). 8(4): 105. doi: 10.3390/antiox8040105
Kasote D. M., Katyare S.S., Hegde M.V., Bae H. (2015) Significance of Antioxidant Potential of Plants and its Relevance to Therapeutic Applications. Int J Biol Sci; 11(8):982-991. doi:10.7150/ijbs.12096.
Kohen R, Nyska A. (2002) Oxidation of biological systems: oxidative stress phenomena, antioxidants, redox reactions, and methods for their quantification. Toxicol Pathol. 30:620–50. DOI:10.1080/01926230290166724
Kolupaev Y. E. (2007) Aktyvnye formy kysloroda v rastenyyakh pry deystvyy stressorov: obrazovanye y vozmozhnye funktsyy [Active forms of oxygen in plants under the action of stressors: formation and possible functions] Visnyk Kharkivsʹkoho natsionalʹnoho ahrarnoho universytetu. Seriya: Biolohiya. 3, 6-26. (in Russian).
Kostуuk V.A. (2004) Bioradikaly i bioantioksidanty [Bioradicals and bioantioxidants]. BGU, Mn. (in Russian).
Maksimov I.V. (2006) Pro/antioksidantnaya sistema i ustoychivost' rasteniy k patogenam [Pro/antioxidant system and plant resistance to pathogens]. Uspekhi sovrem. biologii. 126, 3, 250–261. (in Russian).
Marrocco I, Altieri F, Peluso I. (2017). Measurement and Clinical Significance of Biomarkers of Oxidative Stress in Humans. Oxid Med Cell Longev. 2017: 6501046. doi: 10.1155/2017/6501046
Merzlyak M. N. (1999). Aktivirovannyj kislorod i zhiznedejatel'nost' rastenij [Activated oxygen species in plants] Sorosovskij obrazovatel'nyj zhurnal, 9, 20 – 26. (in Russian)
Pacheco J. H. L., M. A. Carballo, and M. E. Gonsebatt, (2018). “Antioxidants against environmental factor-induced oxidative stress,” in Nutritional Antioxidant Therapies: Treatments and Perspectives, K. H. Al-Gubory, Ed., vol. 8, pp. 189–215, Springer, Cham, Switzerland. https://doi.org/10.1007/978-3-319-67625-8
Polesskaja O.G. (2007) Rastitel'naja kletka i aktivnye formy kisloroda: uchebnoe posobie [Plant cell and reactive oxygen species]. KDU, Moskva. (in Russian).
Shao H.B., Chu L.Y., Shao M.A., Jaleel C.A., Mi H.M. (2008) Higher plant antioxidants and redox signaling under environmental stresses. C R Biol. 331:433–41. https://doi.org/10.1016/j.crvi.2008.03.011
Smirnoff N. (2005) Antioxidants and reactive oxygen species in plants. Blackwell Publishing, NY.
Smirnoff N., Arnaud D. (2019) Hydrogen peroxide metabolism and functions in plants. New Phytol.;221:1197–1214. doi: 10.1111/nph.15488.
Song W., Derito C.M., Liu M.K., He X., Dong M., Liu R.H. (2010) Cellular antioxidant activity of common vegetables. J. Agric. Food Chem. 58:6621–6629. doi: 10.1021/jf9035832.
Tarchevskiy I.A. (2002). Signal'nyye sistemy kletok rasteniy [Signal systems of plant cells] Nauka. Moskva, 294. (in Russian).
Tsebrzhinskiy O.I. (2002) Differentsirovannoye spektrofotometricheskoye opredeleniye produktsii superoksida v tkanyakh NST-testom [Differentiated spectrophotometric determination of superoxide production in tissues by the HCT test]. Aktual'ní problemi suchasnoí̈ meditsini. 1 (2), 96–97. (in Russian).
Tsebrzhinskiy O.I. (1992) Nekotoryye aspekty antioksidantnogo statusa [Some aspects of antioxidant status] Fiziologiya i patologiya perekisnogo okisleniya lipidov, gemostaza iimmunogeneza. Poltava. 120–155. (in Russian).
Xu, D.-P.; Li, Y.; Meng, X.; Zhou, T.; Zhou, Y.; Zheng, J.; Zhang, J.-J.; Li, H.-B. (2017) Natural Antioxidants in Foods and Medicinal Plants: Extraction, Assessment and Resources. Int. J. Mol. Sci. 18, 96. https://doi.org/10.3390/ijms18010096
Ye Y, Li J, Yuan Z (2013). "Effect of antioxidant vitamin supplementation on cardiovascular outcomes: a meta-analysis of randomized controlled trials". PLOS ONE. 8 (2): e56803. doi:10.1371/journal.pone.0056803
Copyright
La Revista de la Universidad del Zulia declara que reconoce los derechos de los autores de los trabajos originales que en ella se publican; dichos trabajos son propiedad intelectual de sus autores. Los autores preservan sus derechos de autoría y comparten sin propósitos comerciales, según la licencia adoptada por la revista..
Esta obra está bajo la licencia:
Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)