Actitudes hacia los roles de género en la elección de carreras STEM: Evaluación del Modelo Socio Cognitivo
Resumen
La persistencia de brechas de género en carreras STEM (relacionadas con Ciencia, Tecnología, Ingeniería y Matemáticas) afecta la participación de mujeres en ocupaciones que ofrecen mayores oportunidades salariales y de proyección laboral, debido a estereotipos de género, expectativas sociales y menor autoeficacia percibida. Al respecto, el Modelo Socio Cognitivo de Elección de Carrera explica cómo los individuos desarrollan intereses profesionales, hacen elecciones educativas y de carrera, así como de los niveles de logro y persistencia en los campos elegidos. El objetivo del presente estudio fue determinar la influencia de las actitudes hacia los roles de género en la elección de carreras STEM, es decir, en ciencia, tecnología, ingeniería y matemáticas, según el Modelo Socio Cognitivo de Elección de Carrera. El estudio fue cuantitativo, de diseño explicativo con variables manifiestas. Los resultados evidenciaron una leve influencia de los roles de género sobre la autoeficacia, mas no en las otras variables de la elección de carreras. Asimismo, se reportó una presencia significativa y moderada de actitudes hacia los roles de género. Se concluyó que las actitudes hacia los roles de género influyen en la elección de carreras STEM, a partir de los factores autoeficacia y metas.
Descargas
Citas
Ato, M., López, J. J., y Benavente, A. (2013). Un sistema de clasificación de diseños de investigación en psicología. Anales de Psicología/ Annals of Psychology, 29(3), 1038-1059. https://doi.org/10.6018/analesps.29.3.178511
Bleeker, M. M., y Jacobs, J. E. (2004). Achievement in math and science: Do mothers’ beliefs matter 12 years later? Journal of Educational Psychology, 96(1), 97-109. https://doi.org/10.1037/0022-0663.96.1.97
Bolds, T. (2017). A structural and intersectional analysis of high school students’ STEM career development using a social cognitive career theory framework [Doctoral Dissertation, Syracuse University]. https://surface.syr.edu/etd/721
Britner, S. L., y Pajares, F. (2006). Sources of science self-efficacy beliefs of middle school students. Journal of Research in Science Teaching, 43(5), 485-499. https://doi.org/10.1002/tea.20131
Brown, D. (2002). Career choice and development. Jossey Bass.
Carlone, H. B., y Johnson, A. (2007). Understanding the science experiences of successful women of color: Science identity as an analytic lens. Journal of Research in Science Teaching, 44(8), 1187-1218. https://doi.org/10.1002/tea.20237
Chatard, A., Guimond, S., y Selimbegovic, L. (2006). “How good are you in math?” The effect of gender stereotypes on students’ recollection of their school marks. Journal of Experimental Social Psychology, 43(6), 1017-1024. https://doi.org/10.1016/j.jesp.2006.10.024
Chávez, V. A., Reyes, J. R., Carrillo, M. V., y Rodríguez, Á. F. (2020). Diferencias de género en unidades educativas rurales de Ecuador. Revista de Ciencias Sociales (Ve), XXVI(1), 203-218. https://doi.org/10.31876/rcs.v26i1.31320
Costello, A. B., y Osborne, J. W. (2005). Best practices in exploratory Factory analysis: four recommendations for getting the most from your analysis. Practical Assessment, Research, and Evaluation, 10(7), 1-9. https://doi.org/10.7275/jyj1-4868
Cover, B., Jones, J. I., y Watson, A. (2011). Science, technology, engineering and mathematics (STEM) occupations: A visual essay. Monthly Labor Review, 134(5), 3-15. https://www.bls.gov/opub/mlr/2011/05/art1full.pdf
Dasgupta, N., y Stout, J. G. (2014). Girls and women in science, technology, engineering, and mathematics: Stemming the tide and broadening participation in STEM careers. Policy Insights from the Behavioral and Brain Sciences, 1(1), 21-29. https://doi.org/10.1177/2372732214549471
Duffy, R. D., Bott, E. M., Allan, B. A., y Autin, K. L. (2014). Exploring the role of work volition within Social Cognitive Career Theory. Journal of Career Assessment, 22(3), 465-478. https://doi.org/10.1177/1069072713498576
Durham, R. E., Falk, M. L., Daniels, A. G., Reigel, A., Sparks, A., Williams, M., y Yanisko, E. J. (2024). Encouraging STEM careers among minoritized high school students: The interplay between Socio-Environmental factors and other Social Cognitive Career Constructs. Education Sciences, 14(7), 789. https://doi.org/10.3390/educsci14070789
Fernández-García, C. M., Torío-López, S., García-Pérez, O., e Inda-Caro, M. (2019). Parental support, self-efficacy beliefs, outcome expectations and interests in science, technology, engineering and mathematics [STEM]. Universitas Psychologica, 18(2), 1-15. https://doi.org/10.11144/Javeriana.upsy18-2.psse
Fouad, N. A., Smith, P. L., y Enochs, L. (1997). Reliability and validity evidence for the middle school self-efficacy scale. Measurement and Evaluation in Counseling and Development, 30(1), 17-31. https://doi.org/10.1080/07481756.1997.12068914
Fouad, N. A., y Santana, M. C. (2017). SCCT and underrepresented populations in STEM fields: Moving the needle. Journal of Career Assessment, 25(1), 24-39. https://doi.org/10.1177/1069072716658324
Gushue, G. V., y Whitson, M. L. (2006). The relationship of ethnic identity and gender role attitudes to the development of career choice goals among black and Latina girls. Journal of Counseling Psychology, 53(3), 379-385. https://doi.org/10.1037/0022-0167.53.3.379
Hatisaru, V. (2021). Theory-driven determinants of school students’ STEM Career Goals: A preliminary investigation. European Journal of STEM Education, 6(1), 2. https://doi.org/10.20897/ejsteme/9558 b
Hayden, J. (2022). Introduction to health Behavior Theory. Jones & Bartlett Learning.
Inda-Caro, M., Rodríguez-Menéndez, C., y Peña-Calvo, J.-V. (2016). Spanish high school students’ interests in technology: Applying social cognitive career theory. Journal of Career Development, 43(4), 291-307. https://doi.org/10.1177/0894845315599253
Kanny, M. A., Sax, L. J., y Riggers-Piehl, T. A. (2014). Investigating forty years of STEM research: how explanations for the gender gap have evolved over time. Journal of Women and Minorities in Science and Engineering, 20(2), 127-148. https://doi.org/10.1615/JWomenMinorScienEng.2014007246
Kraus, M. W., Piff, P. K., Mendoza-Denton, R., Rheinschmidt, M. L., y Keltner, D. (2012). Social class, solipsism, and contextualism: How the rich are different from the poor. Psychological Review, 119(3), 546-572. https://doi.org/10.1037/a0028756
Lent, R. W., Brown, S. D., Sheu, H.-B., Schmidt, J., Brenner, B. R., Gloster, C. S., Wilkins, G., Schmidt, L. C., Lyons, H., y Treitsman, D. (2005). Social cognitive predictors of academic interests 37 and goals in engineering: Utility for women and students at historically black universities. Journal of Counseling Psychology, 52(1), 84-92. https://doi.org/10.1037/0022-0167.52.1.84
Lent, R. W., Brown, S. D., y Hackett, G. (1994). Toward a unifying social cognitive theory of career and academic interest, choice and performance. Journal of Vocational Behavior, 45(1), 79-122. https://doi.org/10.1006/jvbe.1994.1027
Lent, R. W., Brown, S. D., y Hackett, G. (2000). Contextual supports and barriers to career choice: A social cognitive analysis. Journal of Counselling Psychology, 47(1), 36-49. https://doi.org/10.1037/0022-0167.47.1.36
Lent, R. W., y Brown, S. D. (2006). On conceptualizing and assessing social cognitive constructs in careers research: A measurement guide. Journal of Career Assessment, 14(1), 12-35. https://doi.org/10.1177/1069072705281364
Liu, Y.-H, Lou, S.-J., y Shih, R.-C. (2014). The investigation of STEM self-efficacy and professional commitment to engineering among female high school students. South African Journal of Education, 34(2), 749. https://doi.org/10.15700/201412071216
Makarem, Y., y Wang, J. (2019). Career experiences of women in science, technology, engineering, and mathematics fields: A systematic literature review. Human Resource Development Quarterly, 31(1), 91-111. https://doi.org/10.1002/hrdq.21380
McGinn, K. L., y Oh, E. (2017). Gender, social class, and women’s employment. Current Opinion in Psychology, 18, 84-88. https://doi.org/10.1016/j.copsyc.2017.07.012
Muñoz, C. (2020). Políticas de igualdad de género en la Educación y Formación Técnica y Profesional (EFTP) en América Latina. Organización de las Naciones Unidas para la Educación, la Ciencia y la Cultura (UNESCO). https://unesdoc.unesco.org/ark:/48223/pf0000375587/PDF/375587spa.pdf.multi
Organización Internacional del Trabajo – OIT (2017). El futuro del trabajo que queremos: La voz de los jóvenes y diferentes miradas desde América Latina y el Caribe. OIT. https://www.ilo.org/wcmsp5/groups/public/---americas/---ro-lima/documents/publication/wcms_561498.pdf
Organization for Economic Co-operation and Development – OECD (2016). Education at a Glance 2016: OECD Indicators. OCDE Publishing. https://doi.org/10.1787/eag-2016-en
Organization for Economic Co-operation and Development – OECD (2017). The pursuit of gender equality: An uphill battle. OCDE Publishing. https://doi.org/10.1787/9789264281318-en
Organization for Economic Co-operation and Development – OECD (2019). PISA 2018 Results: Where all students can succeed (Volume II). OCDE Publishing. https://doi.org/10.1787/b5fd1b8f-en
Peña, J. V., Inda, M. D. L. M., y Rodríguez, M. D. C. (2015). La teoría cognitivo social de desarrollo de la carrera: Evidencias al modelo con una muestra de estudiantes universitarios de la rama científica. Bordón, 67(3), 103-122. https://doi.org/10.13042/Bordon.2015.67306
Peña-Calvo, J.-V., Inda-Caro, M., Rodríguez-Menéndez, C., y Fernández-García, C.-M. (2016). Perceived supports and barriers for career development for second year STEM students. Journal of Engineering Education, 105(2), 341-365. https://doi.org/10.1002/jee.20115
Pérez, E. R., y Medrano, L. (2010). Análisis Factorial Exploratorio: Bases conceptuales y metodológicas. Revista Argentina de Ciencias del Comportamiento, 2(1), 58-66
Robnett, R. D., y Leaper, C. (2013). Friendship groups, personal motivation, and gender in relation to high school students’ STEM career interest. Journal of Research on Adolescence, 23(4), 652-664. https://doi.org/10.1111/jora.12013
Rodríguez, C., Inda, M., y Fernández, C. M. (2016). Influence of social cognitive and gender variables on technological academic interest among Spanish high school students: Testing social cognitive career theory. International Journal for Educational and Vocational Guidance, 16(3), 305-325. https://doi.org/10.1007/s10775-015-9312-8
Ruiz-Ruiz, M. F., Noriega-Aranibar, M. T., y Pease-Dreibelbis, M. A. (2021). Brecha de género en la graduación de ingenieras industriales peruanas. Revista de Ciencias Sociales (Ve), XXVII(4), 241-360. https://doi.org/10.31876/rcs.v27i4.37277
Sadler, P. M., Sonnert, G., Hazari, Z., y Tai, R. (2012). Stability and volatility of STEM career interest in high school: A gender study. Science Education, 96(3), 411-427. https://doi.org/10.1002/sce.21007
Sheu, H.-B., y Bordon, J. J. (2017). SCCT Research in the international context. Journal of Career Assessment, 25(1), 58-74. https://doi.org/10.1177/1069072716657826
Stoet, G., y Geary, D. C. (2018). The gender-equality paradox in Science, Technology, Engineering, and Mathematics Education. Psychological Science, 29(4), 581-593. https://doi.org/10.1177/0956797617741719
Stout, J. G., Grunberg, V. A., e Ito, T. A. (2016). Gender roles and stereotypes about science careers help explain women and men’s science pursuits. Sex Roles, 75, 490-499. https://doi.org/10.1007/s11199-016-0647-5
Turner, S. L., Joeng, J. R., Sims, M. D., Dade, S. N., y Reid, M. F. (2019). SES, gender, and STEM careers interests, goals, and actions: A test of SCCT. Journal of Career Assessment, 27(1), 134-150. https://doi.org/10.1177/1069072717748665
United Nations Educational, Scientific and Cultural Organization – UNESCO (2019). Women in Science. Fact Sheet No. 55, FS/2019/SCI/55. UNESCO. https://unesdoc.unesco.org/ark:/48223/pf0000370742
United Nations Educational, Scientific and Cultural Organization – UNESCO (2020). Women in Science. Fact Sheet No. 60, FS/2020/SCI/60. UNESCO. https://unesdoc.unesco.org/ark:/48223/pf0000375033?posInSet=6&queryId=1228
United Nations Educational, Scientific and Cultural Organization – UNESCO (2021). Women in higher education: Has the female advantage put an end to gender inequalities? UNESCO. https://unesdoc.unesco.org/ark:/48223/pf0000377182
Wang, M.-T., Eccles, J. S., y Kenny, S. (2013). Not lack of ability but more choice: individual and gender differences in choice of careers in science, technology, engineering, and mathematics. Psychological Science, 24(5), 770-775. https://doi.org/10.1177/0956797612458937
Zacharia, Z., Hovardas, T., Xenofontos, N., Pavlou, I., e Irakleous, M. (2020). Education and employment of women in science, technology and the digital economy, including AI and its influence on gender equality. European Union. https://www.europarl.europa.eu/RegData/etudes/STUD/2020/651042/IPOL_STU(2020)651042_EN.pdf
Esta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0.