Insulin-like growth factor-1 promotes the proliferation and odontogenic differentiation of human dental pulp cells in vitro and in vivo.

El factor de crecimiento similar a la insulina-1 promueve la proliferación y diferenciación odontogénica de células de pulpa dental humana in vitro e in vivo.

Palabras clave: regeneración del tejido dental, odontoblastos, diferenciación osteogénica

Resumen

Las células de la pulpa dental humana (hDPCs) han emergido como una alternativa prometedora para la regeneración de tejidos dentales. El factor de crecimiento insulínico tipo 1 (IGF-1) juega un rol crucial en la proliferación y diferenciación osteogénica de las hDPCs en condiciones in vitro. No obstante, el impacto del IGF-1 sobre la proliferación y diferenciación odontogénica de las hDPCs en un contexto in vivo aún no ha sido completamente elucidado. En el presente estudio, se extrajeron hDPCs de premolares y terceros molares sanos mediante el uso de colagenasa tipo I y dispasa. La tinción inmunocitoquímica de las hDPCs reveló una reactividad positiva para vimentina y negativa para citoqueratina. El tratamiento con IGF-1 en concentraciones de 50, 75 y 100 ng/mL incrementó de manera significativa y dependiente de la dosis la capacidad proliferativa de las hDPCs. En experimentos in vivo, las hDPCs fueron implantadas en una matriz dérmica acelular y posteriormente trasplantadas de manera subcutánea en ratones desnudos. Tras 2 y 4 semanas de trasplante, la coloración con hematoxilina y eosina evidenció un aumento en la cantidad de células y matriz extracelular en los implantes tratados con IGF-1, mientras que la coloración con Rojo de Alizarina indicó una mayor formación de tejido mineralizado en comparación con el grupo control. El análisis mediante microscopía electrónica de transmisión (TEM) de las hDPCs mostró una abundante presencia de mitocondrias, retículo endoplásmico rugoso y complejos de Golgi. En conclusión, nuestros hallazgos sugieren que el IGF-1 favorece la proliferación de las hDPCs in vitro así como su diferenciación odontogénica in vivo, lo cual señala que la modificación de la señalización del IGF-1 podría ofrecer estrategias potenciales para la regeneración de tejidos dentales.

Descargas

La descarga de datos todavía no está disponible.

Biografía del autor/a

Yan Wang, Hebei Medical University, Shijiazhuang, China.

Department of Oral Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, China.

Nan Du, Hebei Medical University, Shijiazhuang, China.

Department of Oral Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, China.

Cong-na Liu, Hebei Medical University, Shijiazhuang, China.

Department of Oral Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, China.

Wen-jing Li, Hebei Medical University, Shijiazhuang, China.

Department of Oral Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, China.

Citas

Liu S, Wang S, Dong Y. Evaluation of a bioceramic as a pulp capping agent in vitro and in vivo. J Endod. 2015;41(5):652- 657. https://doi.org/10.1016/j.joen.2014.12.009.

Cooper PR, Takahashi Y, Graham LW, Simon S, Imazato S, Smith AJ. Inflammation-regeneration interplay in the dentine-pulp complex. J Dent 2010;38(9):687-697. https://doi.org/10.1016/j.jdent.2010.05.016.

Wang YL, Hu YJ, Zhang FH. Effects of GP- NMB on proliferation and odontoblastic differentiation of human dental pulp cells. Int J Clin Exp Pathol 2015;8(6):6498- 6504.

Miura M, Gronthos S, Zhao M, Lu B, Fisher LW, Robey PG, Shi S. SHED: stem cells from human exfoliated deciduous teeth. Proc Natl Acad Sci USA. 2003;100(10):5807-5812. https://doi.org/10.1073/pnas.0937635100.

Jo YY, Lee HJ, Kook SY, Choung HW, Park JY, Chung JH, Choung YH, Kim ES, Yang HC, Choung PH. Isolation and characterization of postnatal stem cells from human dental tissues. Tissue Eng. 2007;13(4):767-773. https://doi.org/10.1089/ten.2006.0192.6.

Paino F, Ricci G, De Rosa A, D’Aquino R, Laino L, Pirozzi G, Tirino V, Papaccio G. Ecto-mesenchymal stem cells from dental pulp are committed to differentiate into active melanocytes. Eur Cell Mater. 2010;20:295-305. https://doi.org/10. 22203/ecm.v020a24.

Kim BC, Bae H, Kwon IK, Lee EJ, Park JH, Khademhosseini A, Hwang YS. Osteoblastic/cementoblastic and neural differentiation of dental stem cells and their applications to tissue engineering and regenerative medicine. Tissue Eng Part B Rev. 2012;18(3):235-244. https://doi. org/10.1089/ten.TEB.2011.0642.

Smith JG, Smith AJ, Shelton RM, Cooper PR. Dental pulp cell behavior in biomimetic environments. J Dent Res. 2015;94(11):1552-1559. https://doi.org/10.1177/0022034515599767.

Chen FM, Zhang J, Zhang M, An Y, Chen F, Wu ZF. A review on endogenous regenerative technology in periodontal regenerative medicine. Biomaterials. 2010;31(31):7892-7927. https://doi.org/ 10.1016/j.biomaterials.2010.07.019.

Liang C, Liao L, Tian W. Stem cell-based dental pulp regeneration: insights from signaling pathways. Stem Cell Rev Rep. 2021;17(4):1251-1263. https://doi.org/10.1007/s12015-020-10117-3.

Suzuki T, Lee CH, Chen M, Zhao W, Fu SY, Qi JJ, Chotkowski G, Eisig SB, Wong A, Mao JJ. Induced migration of dental pulp stem cells for in vivo pulp regeneration. J Dent Res. 2011;90(8):1013-1018. https://doi.org/10.1177/0022034511408426.

Huang GT, Gronthos S, Shi S. Mesenchymal stem cells derived from dental tissues vs. those from other sources: their biology and role in regenerative medicine. J Dent Res. 2009;88(9):792-806. https://doi.org/ 10.1177/0022034509340867.

Pierdomenico L, Bonsi L, Calvitti M, Rondelli D, Arpinati M, Chirumbolo G, Becchetti E, Marchionni C, Alviano F, Fossati V, Staffolani N, Franchina M, Grossi A, Bagnara GP. Multipotent mesenchymal stem cells with immunosuppressive activity can be easily isolated from dental pulp. Transplantation. 2005;80(6):836-842. https://doi.org/10.1097/01.tp.0000173794.72151.88.

Chen FM, Zhang M, Wu ZF. Toward delivery of multiple growth factors in tissue engineering. Biomaterials. 2010;31(24):6279-6308. https://doi.org/10.1016/j.biomaterials.2010.04.053.

Kim SG, Zhou J, Solomon C, Zheng Y, Suzuki T, Chen M, Song S, Jiang N, Cho S, Mao JJ. Effects of growth factors on dental stem/progenitor cells. Dent Clin North Am. 2012;56(3):563-575. https://doi. org/10.1016/j.cden.2012.05.001.

Fang Y, Wang LP, Du FL, Liu WJ, Ren GL. Effects of insulin-like growth factor I on alveolar bone remodeling in diabetic rats. J Periodontal Res. 2013;48(2):144-150. https://doi.org/10.1111/j.1600-0765. 2012.01512.x.

Chen FM, Zhao YM, Wu H, Deng ZH, Wang QT, Zhou W, Liu Q, Dong GY, Li K, Wu ZF, Jin Y. Enhancement of periodontal tissue regeneration by locally controlled delivery of insulin-like growth factor-I from dextran-co-gelatin microspheres. J Control Release. 2006;114(2):209-222. https:// doi.org/10.1016/j.jconrel.2006.05.014.

Feng X, Huang D, Lu X, Feng G, Xing J, Lu J, Xu K, Xia W, Meng Y, Tao T, Li L, Gu Z. Insulin-like growth factor 1 can promote proliferation and osteogenic differentiation of human dental pulp stem cells via mTOR pathway. Dev Growth Differ. 2014;56(9):615-624. https://doi.org/10.1111/dgd.12179.

Yu Y, Mu J, Fan Z, Lei G, Yan M, Wang S, Tang C, Wang Z, Yu J, Zhang G. Insulin-like growth factor 1 enhances the proliferation and osteogenic differentiation of human periodontal ligament stem cells via ERK and JNK MAPK pathways. Histochem Cell Biol. 2012;137(4):513-525. https:// doi.org/10.1007/s00418-011-0908-x.

Lu W, Xu W, Li J, Chen Y, Pan Y, Wu B. Effects of vascular endothelial growth factor and insulin-growth factor1 on proliferation, migration, osteogenesis and vascularization of human carious dental pulp stem cells. Mol Med Rep. 2019;20(4):3924-3932. https://doi.org/10.3892/mmr.2019.10606.

Lins-Candeiro CL, Paranhos LR, de Oliveira Neto NF, Ribeiro RAO, de-Souza- Costa CA, Guedes FR, da Silva WHT, Turrioni AP, Santos Filho PCF. Viability and oxidative stress of dental pulp cells after indirect application of chemome chanical agents: An in vitro study. Int Endod J. 2023; 57(3):315-327. doi: 10.1111/iej.14013.

Schreier C, Rothmiller S, Scherer MA, Rummel C, Steinritz D, Thiermann H, Schmidt A. Mobilization of human mesenchymal stem cells through different cytokines and growth factors after their immobilization by sulfur mustard. Toxicol Lett. 2018;293:105-111. https://doi. org/10.1016/j.toxlet.2018.02.011.

Martin-Del-Campo M, Rosales-Ibañez R, Alvarado K, Sampedro JG, Garcia-Sepulveda CA, Deb S, San Román J, Rojo L. Strontium folate loaded biohybrid scaffolds seeded with dental pulp stem cells induce in vivo bone regeneration in critical sized defects. Biomater Sci. 2016;4(11):1596-1604. https://doi. org/10.1039/c6bm00459h.

Woo SM, Lim HS, Jeong KY, Kim SM, Kim WJ, Jung JY. Vitamin D promotes odontogenic differentiation of human dental pulp cells via ERK activation. Mol Cells. 2015;38(7):604-609. https://doi. org/10.14348/molcells.2015.2318.

Teng CF, Jeng LB, Shyu WC. Role of insulin-like growth factor 1 receptor signaling in stem cell stemness and therapeutic efficacy. Cell Transplant. 2018;27(9):1313-1319. https://doi.org/10.1177/0963689718779777.

Werle SB, Lindemann D, Steffens D, Demarco FF, de Araujo FB, Pranke P, Casagrande L. Carious deciduous teeth are a potential source for dental pulp stem cells. Clin Oral Investig. 2016;20(1):75-81. https://doi. org/10.1007/s00784-015-1477-5.

Gnanasegaran N, Govindasamy V, Abu Kasim NH. Differentiation of stem cells derived from carious teeth into dopaminergic-like cells. Int Endod J. 2016;49(10):937-949. https://doi.org/10.1111/iej.12545. Epub 2015 Oct 3.

Gronthos S, Mankani M, Brahim J, Robey PG, Shi S. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci U S A. 2000;97(25):13625-13630. https://doi.org/10.1073/pnas.240309797.

Almushayt A, Narayanan K, Zaki AE, George A. Dentin matrix protein 1 induces cytodifferentiation of dental pulp stem cells into odontoblasts. Gene Ther. 2006;13(7):611-620. https://doi.org/10.1038/sj.gt.3302687.

Zhang W, Walboomers XF, Shi S, Fan M, Jansen JA. Multilineage differentiation potential of stem cells derived from human dental pulp after cryopreservation. Tissue Eng. 2006;12(10):2813-2823. https://doi. org/10.1089/ten.2006.12.2813.

Yang X, Zhang W, van den Dolder J, Walboomers XF, Bian Z, Fan M, Jansen JA. Multilineage potential of STRO-1+ rat dental pulp cells in vitro. J Tissue Eng Re-gen Med. 2007;1(2):128-135. https://doi. org/10.1002/term.13.

Moeller M, Pink C, Endlich N, Endlich K, Grabe HJ, Völzke H, Dörr M, Nauck M, Lerch MM, Köhling R, Holtfreter B, Kocher T, Fuellen G. Mortality is associated with inflammation, anemia, specific diseases and treatments, and molecular markers. PLoS One. 2017;12(4):e0175909. https:// doi.org/10.1371/journal.pone.0175909.

Alarçin E, Lee TY, Karuthedom S, Mohammadi M, Brennan MA, Lee DH, Marrella A, Zhang J, Syla D, Zhang YS, Khademhosseini A, Jang HL. Injectable shear-thinning hydrogels for delivering osteogenic and angiogenic cells and growth factors. Biomater Sci. 2018;6(6):1604-1615. https://doi. org/10.1039/c8bm00293b.

Shinohara Y, Tsuchiya S, Hatae K, Honda MJ. Effect of vitronectin bound to insulin-like growth factor-I and insulin-like growth factor binding protein-3 on porcine enamel organ-derived epithelial cells. Int J Dent. 2012;2012:386282. https://doi.org/ 10.1155/2012/386282.

Catón J, Bringas P Jr, Zeichner-David M. Establishment and characterization of an immortomouse-derived odontoblast-like cell line to evaluate the effect of insulin-like growth factors on odontoblast differentiation. J Cell Biochem. 2007;100(2):450- 463. https://doi.org/10.1002/jcb.21053.

Schminke B, Vom Orde F, Gruber R, Schliephake H, Bürgers R, Miosge N. The pathology of bone tissue during peri-implantitis. J Dent Res. 2015; 94(2):354-361. https://doi.org/10.1177/0022034514559128.

Onishi T, Kinoshita S, Shintani S, Sobue S, Ooshima T. Stimulation of proliferation and differentiation of dog dental pulp cells in serum-free culture medium by insulin-like growth factor. Arch Oral Biol. 1999;44(4):361-371. https://doi. org/10.1016/s0003-9969(99)00007-2.

Wang S, Mu J, Fan Z, Yu Y, Yan M, Lei G, Tang C, Wang Z, Zheng Y, Yu J, Zhang G. Insulin-like growth factor 1 can promote the osteogenic differentiation and osteogenesis of stem cells from apical papilla. Stem Cell Res. 2012;8(3):346-356. https:// doi.org/10.1016/j.scr.2011.12.005.

Chen C, Xu Y, Song Y. IGF-1 gene-modified muscle-derived stem cells are resistant to oxidative stress via enhanced activation of IGF-1R/PI3K/AKT signaling and secretion of VEGF. Mol Cell Biochem. 2014;386(1- 2):167-175. https://doi.org/10.1007/s11010-013-1855-8.

Liu C, Zhang Z, Tang H, Jiang Z, You L, Liao Y. Crosstalk between IGF-1R and other tumor promoting pathways. Curr Pharm Des. 2014;20(17):2912-1921.https://doi.org/10.2174/1381612811319 9990596.

Girnita L, Worrall C, Takahashi S, Seregard S, Girnita A. Something old, something new and something borrowed: emerging paradigm of insulin-like growth factor type 1 receptor (IGF-1R) signaling regulation. Cell Mol Life Sci. 2014;71(13):2403-2427. https://doi.org/10.1007/s00018-013-1514-y.

Wan Y, Zhuo N, Li Y, Zhao W, Jiang D. Autophagy promotes osteogenic differentiation of human bone marrow mesenchymal stem cell derived from osteoporotic vertebrae. Biochem Biophys Res Commun. 2017;488(1):46-52. https://doi. org/10.1016/j.bbrc.2017.05.004.
Publicado
2024-05-21
Cómo citar
Wang, Y., Du, N., Liu, C.- na, & Li, W.- jing. (2024). Insulin-like growth factor-1 promotes the proliferation and odontogenic differentiation of human dental pulp cells in vitro and in vivo.: El factor de crecimiento similar a la insulina-1 promueve la proliferación y diferenciación odontogénica de células de pulpa dental humana in vitro e in vivo. Investigación Clínica, 65(2), 179-191. https://doi.org/10.54817/IC.v65n2a05
Sección
Trabajos Originales