Pulmonary toxicity associated with high-dose favipiravir and treatment options: biochemical and histopathological evaluation.
Toxicidad pulmonar asociada a altas dosis de favipiravir y opciones de tratamiento: Evaluación bioquímica e histopatológica.
Resumen
El Favipiravir es un fármaco antiviral de amplio espectro que es un
inhibidor de la ARN polimerasa viral dependiente de ARN. El Favipiravir se usa en do-
sis altas para tratar el COVID-19, pero tiene efectos secundarios en humanos a estas
dosis. Los efectos secundarios del favipiravir se han asociado con el estrés oxidativo
en la literatura. En este trabajo experimental, investigamos los efectos bioquímicos
e histopatológicos de lacidipina, pirofosfato de tiamina (TTP) y trifosfato de adeno-
sina (ATP), fármacos con propiedades antioxidantes, sobre la toxicidad pulmonar
causada por altas dosis de favipiravir en ratas. Las ratas se clasificaron en cinco gru-
pos: sanas (HG), favipiravir solo (Fav), lacidipina+favipiravir (LFav), TPP+favipiravir
(TFav) y ATP+favipiravir (AFav). Se administró favipiravir (800 mg/kg) dos veces al
día durante siete días. Se administraron lacidipina (4 mg/kg), TPP (20 mg/kg) y
ATP (25 mg/kg) una vez al día durante siete días. Se midieron los niveles de antioxi-
dantes oxidantes (malondialdehído), no enzimáticos (glutatión total) y enzimáticos
(superóxido dismutasa y catalasa) en los tejidos pulmonares disecados. Además, los
tejidos fueron examinados histopatológicamente. La administración sistémica de
altas dosis de favipiravir aumentó los niveles de oxidantes y disminuyó los niveles
de antioxidantes en el tejido pulmonar de ratas. Paralelamente, el examen histopa-
tológico del tejido pulmonar reveló la presencia de graves infiltraciones de células
mononucleares en las zonas intersticiales y una pronunciada hiperplasia linfoide.
Lacidipina mostró una eficacia superior para mitigar el estrés oxidativo y prevenir
la disminución de antioxidantes inducida por favipiravir en comparación con TPP y
ATP. Histopatológicamente, la administración de lacidipina redujo significativamen-
te el daño oxidativo pulmonar. La TTP redujo moderadamente la lesión pulmonar
grave asociada al favipiravir. Sin embargo, el ATP fue ineficaz contra la lesión pul-
monar asociada al favipiravir. Lacidipina ofrece más beneficios terapéuticos que el
TPP en el tratamiento de la lesión pulmonar oxidativa causada por altas dosis de
favipiravir.
Descargas
Citas
Łagocka R, Dziedziejko V, Kłos P, Pawlik A. Favipiravir in therapy of viral infections. J Clin Med 2021; 10(2): 273. https://doi.org/10.3390/jcm10020273
Pogue JM, McCreary EK. Coronavirus disease 2019 treatment: a review of early and emerging options. Open Forum Infect Dis 2020; 7(4): ofaa105. https://doi.org/10.1093/ofid/ofaa105
Majewska A, Smyk JM. Favipiravir in the battle with respiratory viruses. Mini Rev Med Chem 2022; 22(17): 2224-2236. https://doi.org/10.2174/1389557522666220218122744
Favipiravir. National Institute of Child Health and Human Development; 2006. Bethesda (MD). Updated 15 February 2023. PMID: 32401463. https://www.ncbi.nlm.nih.gov/pubmed/32401463
Lipsitch M, Sissoko D, Laouenan C, Folkesson E, M’Lebing A-B, Beavogui A-H, Baize S, Camara A-M, Maes P, Shepherd S, Danel C, Carazo S, Conde MN, Gala J-L, Colin G, Savini H, Bore JA, Le Marcis F, Koundouno FR, Petitjean F, Lamah M-C, Diederich S, Tounkara A, Poelart G, Berbain E, Dindart J-M, Duraffour S, Lefevre A, Leno T, Peyrouset O, Irenge L, Bangoura NF, Palich R, Hinzmann J, Kraus A, Barry TS, Berette S, Bongono A, Camara MS, Chanfreau Munoz V,
Doumbouya L, Souley H, Kighoma PM, Koundouno FR, Réné L, Loua CM, Massala V, Moumouni K, Provost C, Samake N, Sekou C, Soumah A, Arnould I, Komano MS, Gustin L, Berutto C, Camara D, Camara FS, Colpaert J, Delamou L, Jansson L, Kourouma E, Loua M, Malme K, Manfrin E, Maomou A, Milinouno A, Ombelet S, Sidiboun AY, Verreckt I, Yombouno P, Bocquin A, Carbonnelle C, Carmoi T, Frange P, Mely S, Nguyen V-K, Pannetier D, Taburet A-M, Treluyer J-M, Kolie J, Moh R, Gonzalez MC, Kuisma E, Liedigk B, Ngabo D, Rudolf M, Thom R, Kerber R, Gabriel M, Di Caro A, Wölfel R, Badir J, Bentahir M, Deccache Y, Dumont C, Durant J-F, El Bakkouri K, Gasasira Uwamahoro M, Smits B, Toufik N, Van Cauwenberghe S, Ezzedine K, Dortenzio E, Pizarro L, Etienne A, Guedj J, Fizet A, Barte de Sainte Fare E, Murgue B, Tran-Minh T, Rapp C, Piguet P, Poncin M, Draguez B, Allaford Duverger T, Barbe S, Baret G, Defourny I, Carroll M, Raoul H, Augier A, Eholie SP, Yazdanpanah Y, Levy-Marchal C, Antierrens A, Van Herp M, Günther S, de Lamballerie X, Keïta S, Mentre F, Anglaret X, Malvy D. Experimental Treatment with Favipiravir for Ebola Virus Disease (the JIKI Trial): A Historically Controlled, Single-Arm Proof-of-Concept Trial in Guinea. PLoS Med 2016; 13(3): e1001967. https://doi. org/10.1371/journal.pmed.1001967Mentre F, Taburet AM, Guedj J, Anglaret X, Keita S, de Lamballerie X, Malvy D. Dose regimen of favipiravir for Ebola virus disease. Lancet Infect Dis 2015; 15(2): 150-151. https://doi.org/10.1016/S1473-3099(14)71047-3
Hung DT, Ghula S, Aziz JMA, Makram AM, Tawfik GM, Abozaid AA-F, Pancharatnam RA, Ibrahim AM, Shabouk MB, Turnage M, Nakhare S, Karmally Z, Kouz B, Le TN, Alhijazeen S, Phuong NQ, Ads AM, Abdelaal AH, Nam NH, Iiyama T, Kita K, Hirayama K, Huy NT. The efficacy and adverse effects of favipiravir on patients with COVID-19: A systematic review and meta-analysis of published clinical trials and observational studies. Int J Infect Dis 2022; 120: 217-227. https://doi.org/10.1016/j.ijid.2022.04.035
Pilkington V, Pepperrell T, Hill A. A review of the safety of favipiravir a potential treatment in the COVID-19 pandemic? J Virus Erad 2020; 6(2): 45-51. https://doi.org/10.1016/S2055-6640(20)30016-9
Driouich J-S, Cochin M, Lingas G, Moureau G, Touret F, Petit P-R, Piorkowski G, Barthélémy K, Laprie C, Coutard B, Guedj J, de Lamballerie X, Solas C, Nougairède A. Favipiravir antiviral efficacy against SARS-CoV-2 in a hamster model. Nat Commun 2021; 12(1): 1735. https://doi.org/10.1038/s41467-021-21992-w
Yamazaki S, Suzuki T, Sayama M, Nakada T-a, Igari H, Ishii I. Suspected cholestatic liver injury induced by favipiravir in a patient with COVID-19. J Infect Chemother 2021; 27(2): 390-392. https://doi. org/10.1016/j.jiac.2020.12.021
Chen C, Zhang Y, Huang J, Yin P, Cheng Z, Wu J, Chen S, Zhang Y, Chen B, Lu M, Luo Y, Ju L, Zhang J, Wang X. Favipiravir versus arbidol for clinical recovery rate in moderate and severe adult COVID-19 patients: a prospective, multicenter, open-label, randomized controlled clinical trial. FrontPharmacol 2021; 12: 683296. https://doi. org/10.3389/fphar.2021.683296
Dogan E, Alkan-Çeviker S, Vurucu S, Sener A, Yüksel B, Gönlügür U, Simsek T, Hakan Ulusoy M. Investigation of the frequency of adverse effects in patients treated with favipiravir as SARS-CoV-2 treatment. Klimik Dergisi/Klimik J 2021; 34(2): 95-98. https://doi.org/10.36519/kd.2021.3563
Hayden FG, Shindo N. Influenza virus polymerase inhibitors in clinical development. Curr Opin Infect Dis 2019; 32(2): 176-186. https://doi.org/10.1097/qco.0000000000000532
Kara A, Yakut S, Caglayan C, Atçalı T, Ulucan A, Kandemir FM. Evaluation of the toxicological effects of favipiravir (T-705) on liver and kidney in rats: biochemical and histopathological approach. Drug Chem Toxicol 2022; 46(3): 546-556. https://doi. org/10.1080/01480545.2022.2066116
McCormack PL, Wagstaff AJ. Lacidipine. Drugs 2003; 63(21): 2327-2356. https://doi.org/10.2165/00003495-200363210-00008
Sai Chebrolu T, Kumar L, Verma R. Lacidipine: review of analytical methods developed for pharmaceutical dosage forms and biological fluids. Bioanalysis 2021; 13(12):1011-1024. https://doi.org/10.4155/bio-2021-0024
Suleyman B, Halici Z, Odabasoglu F, Gocer F. The effect of lacidipine on indomethacin induced ulcers in rats. Int J Pharmacol 2012; 8(2): 115-121. https://doi.org/10.3923/ijp.2012.115.121
Suleyman H, Halici Z, Hacimuftuoglu A, Gocer F. Role of adrenal gland hormones in antiinflammatory effect of calcium channel blockers. Pharmacol Rep 2006; 58(5): 692-699. PMID: 17085861
Sica DA. Loop diuretic therapy,thiamine balance, and heart failure. Congestive Heart Fail 2007; 13(4): 244-247. https://doi. org/10.1111/j.1527-5299.2007.06260.x
Ozer M, Ince S, Gundogdu B, Aktas M, Uzel K, Gursul C, Suleyman H, Suleyman Z. Effect of thiamine pyrophosphate on cyclophosphamide-induced oxidative ovarian damage and reproductive dysfunction in female rats. Adv Clin Exp Med 2022; 31(2): 129-137. https://doi.org/10.17219/acem/142535
Turan MI, Cayir A, Cetin N, Suleyman H, Turan IS, Tan H. An investigation of the effect of thiamine pyrophosphate on cisplatin-induced oxidative stress and DNA damage in rat brain tissue compared with thiamine. Hum Exp Toxicol 2013; 33(1): 14-21. https://doi. org/10.1177/0960327113485251
Dunn J, Grider MH. Physiology, Adenosine Triphosphate. 2023 Feb 13. In: Stat- Pearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023 Jan–.PMID: 31985968. https://www.ncbi.nlm.nih.gov/ pubmed/31985968
Saquet AA, Streif J, Bangerth F. Changes in ATP, ADP and pyridine nucleotide levels related to the incidence of physiological disorders in ‘Conference’ pears and ‘Jonagold’ apples during controlled atmosphere storage. J Hortic Sci Biotechnol 2015; 75(2): 243-249. https://doi.org/10.1080/14620316.2000.11511231
Yi C, Jiang Y, Shi J, Qu H, Xue S, Duan X, Shi J, Prasad NK. ATP-regulation of antioxidant properties and phenolics in litchi fruit during browning and pathogen infection process. Food Chem 2010; 118(1): 42-47. https://doi.org/10.1016/j. foodchem.2009.04.074
Bilici S, Altuner D, Suleyman Z, Bulut S, Sarigul C, Gulaboglu M, Altindag F, Ozcicek A, Gursul C, Suleyman H. Favipiravir-induced inflammatory and hydropic degenerative liver injury in rats. Adv Clin Exp Med 2023; 32(8): 881-887. https://doi.org/10.17219/acem/159089
Polat B, Suleyman H, Sener E, Akcay F. Examination of the effects of thiamine and thiamine pyrophosphate on doxorubicin-induced experimental cardiotoxicity. J Cardiovasc Pharmacol Ther 2014; 20(2): 221-229. https://doi. org/10.1177/1074248414552901
Koç A, Gazi M, Sayar AC, Onk D, Arı MA, Süleyman B, Ağgül AG, Altındağ F, Süleyman DAH. Molecular mechanism of the protective effect of adenosine triphosphate against paracetamol-induced liver toxicity in rats. Gen Physiol Biophys 2023; 42(02): 201-208. https://doi.org/10.4149/gpb_2022055
Góth L. A simple method for determination of serum catalase activity and revision of reference range. Clin Chim Acta 1991; 196(2-3): 143-151. https://doi. org/10.1016/0009-8981(91)90067-m
Bradford M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of proteindye binding. Anal Biochem 1976; 72(1-2): 248-254. https://doi. org/10.1016/0003-2697(76)90527-3
Balcı S, Çöllüoğlu Ç, Yavuzer B, Bulut S, Altındağ F, Akbaş N, Süleyman H. Effect of low and high dose of favipiravir on ovarian and reproductive function in female rats: Biochemical and histopathological evaluation. Gen Physiol Biophys 2022; 41(05): 457-463. https://doi.org/10.4149/gpb_2022036
Naidu MU, Kumar KV, Shifow AA, Prayag A, Ratnakar KS. Lacidipine protects against cyclosporine-induced nephrotoxicity in rats. Nephron 1999; 81(1): 60-66. https://doi.org/10.1159/000045247
van Amsterdam FTM, Roveri A, Maiorino M, Ratti E, Ursini F. Lacidipine: A dihydropyridine calcium antagonist with antioxidant activity. Free Radic Biol Med 1992; 12(3): 183-187. https://doi.org/10.1016/0891-5849(92)90025-c
Suleyman H, Kocaturk H, Bedir F, Turangezli O, Arslan R, Coban T, Altuner D. Effect of adenosine triphosphate, benidipine and their combinations on bevacizumab-induced kidney damage in rats. Adv Clin Exp Med 2021; 30(11): 1175-1183. https://doi.org/10.17219/acem/140440
Cadenas E. Basic mechanisms of antioxidant activity. Biofactors 1997; 6(4): 391-397. https://doi.org/10.1002/ biof.5520060404
Valko M, Leibfritz D, Moncol J, Cronin MTD, Mazur M, Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 2007; 39(1): 44-84. https://doi.org/10.1016/j.biocel.2006.07.001
Clarkson PM, Thompson HS. Antioxidants: what role do they play in physical activity and health? Am J Clin Nutr 2000; 72(2): 637S-646S. https://doi. org/10.1093/ajcn/72.2.637S
Kisaoglu A, Borekci B, Yapca OE, Bilen H, Suleyman H. Tissue damage and oxidant/ antioxidant balance. Eurasian J Med 2013; 45(1): 47-49. https://doi.org/10.5152/eaj m.2013.08
Kaplowitz N, Aw TY, Ookhtens M. The regulation of hepatic glutathione. Annu Rev Pharmacol Toxicol 1985; 25(1): 715-744. https://doi.org/10.1146/annurev.pa.25.040185.003435
Lu SC. Regulation of glutathione synthesis. Mol Aspects Med 2009; 30(1-2): 42-59. https://doi.org/10.1016/j.mam.2008.05.005
Owen JB, Butterfield DA. Measurement of oxidized/reduced glutathione ratio. Methods Mol Biol 2010; 648: 269-277. https://doi.org/10.1007/978-1-60761-756-3_18
Ali SS, Ahsan H, Zia MK, Siddiqui T, Khan FH. Understanding oxidants and antioxidants: Classical team with new players. J Food Biochem 2020; 44(3): e13145. https://doi.org/10.1111/jfbc.13145
Ermis H, Parlakpinar H, Elbe H, Vardi N, Polat A, Gulbas G. Effects of varenicline on lung tissue in the animal model. J Bras Pneumol 2020; 46(2): e20180406-e20180406. Efeitos da vareniclina no tecido pulmonar em modelo animal. https://doi.org/10.36416/1806-3756/e20180406
Khan NA, Chattopadhyay P, Abid M, Pawdey A, Kishore K, Wahi AK. Protective effects of amlodipine on mitochondrial injury in ischemic reperfused rat heart. J Environ Biol 2012; 33(3): 591-595. PMID: 23029908
Khurana K, Bansal N. Lacidipine attenuates reserpine-induced depression-like behavior and oxido-nitrosative stress in mice. Naunyn Schmiedebergs Arch Pharmacol 2019; 392(10): 1265-1275. https://doi.org/10.1007/s00210-019-01667-6
Ucak T, Karakurt Y, Tasli G, Cimen FK, Icel E, Kurt N, Ahiskali I, Süleyman H. The effects of thiamine pyrophosphate on ethanol induced optic nerve damage. BMC Pharmacol Toxicol 2019; 20(1): 40. https://doi.org/10.1186/s40360-019-0319-5
Demiryilmaz I, Sener E, Cetin N, Altuner D, Suleyman B, Albayrak F, Akcay F, Suleyman H. Biochemically and histopatho-logically comparative review of thiamine’s and thiamine pyrophosphate’s oxidative stress effects generated with methotrexate in rat liver. Med Sci Monit 2012; 18(12): BR475-BR481. https://doi.org/10.12659/msm.883591
Ozer M, Ince S, Altuner D, Suleyman Z, Cicek B, Gulaboglu M, Mokhtare B, Gursul C, Suleyman H. Protective rffect of adenosine triphosphate against 5-fluorou-racil-induced oxidative ovarian damage in vivo. Asian Pac J Cancer Prev 2023; 24(3): 1007-1013. https://doi.org/10.31557/APJCP.2023.24.3.1007
Tosun M, Olmez H, Unver E, Arslan Y, Cimen F, Ozcicek A, Aktas M, Suleyman H. Oxidative and pro-inflammatory lung injury induced by desflurane inhalation in rats and the protective effect of rutin. Adv Clin Exp Med 2021; 30(9): 941-948. https://doi.org/10.17219/acem/136194
Dhouib H, Jallouli M, Draief M, Bouraoui S, El-Fazâa S. Oxidative damage and histopathological changes in lung of rat chronically exposed to nicotine alone or associated to ethanol. Pathol Biol (Paris) 2015; 63(6): 258-267. https://doi.org/10.1016/j. patbio.2015.10.001
Stotts C, Corrales-Medina VF, Rayner KJ. Pneumonia-induced inflammation, resolution and cardiovascular disease: causes, consequences and clinical opportunities. Circ Res 2023; 132(6): 751-774. https://doi.org/10.1161/circresaha.122.321636
Tomoda Y, Miyajima T, Nagasawa C, Awaya Y. Clopidogrel-induced pneumonia. BMJ Case Rep 2021; 14(6): e244564. https://doi.org/10.1136/bcr-2021-244564
Jo T, Michihata N, Yamana H, Morita K, Ishimaru M, Yamauchi Y, Hasegawa W, Urushiyama H, Uda K, Matsui H, Fushimi K, Yasunaga H, Nagase T. Risk of drug-in- duced interstitial lung disease in hospitalised patients: a nested case–control study. Thorax 2021; 76(12): 1193-1199. https://doi.org/10.1136/thoraxjnl-2020-215824.
De AK, Rajan RR, Krishnamoorthy L, Bhatt MB, Singh BB. Oxidative stress in radiation-induced interstitial pneumonitis in the rat. Int J Radiat Biol 2009; 68(4): 405-409. https://doi.org/10.1080/09553009514551351.