Transición epitelio – mesenquima y cáncer.

Epithelial-mesenchymal transition and cancer.

Palabras clave: cáncer, epitelio, caderina, plasticidad, transición epitelio-mesenquima

Resumen

La migración e invasión de células cancerosas son componentes claves de la enfermedad metastásica, que es la principal causa de muerte en pacientes con cáncer. La transición epitelio-mesenquima (TEM) y la transición mesenquima-epitelio (TME) son una vía implicada en la metástasis del cáncer. Este proceso comprende la degradación de las uniones célula-célula y célula-matríz extracelular, y la subsecuente pérdida de la regulación de proteínas de unión como la caderina-E, por lo que las células experimentan una reorganización del citoesqueleto. Estas alteraciones están asociadas con un cambio de la forma celular, de una morfología epitelial a una mesenquimatosa. La comprensión de la base molecular y celular de la TEM y de la TME, proporciona conocimientos fundamentales sobre la etiología del cáncer, que pueden conducir a nuevas estrategias terapéuticas. En esta revisión, discutimos algunos de los mecanismos reguladores y el papel patológico de la plasticidad epitelio-mesénquima, con un enfoque en los conocimientos sobre la complejidad y la dinámica de este fenómeno en el cáncer.

Descargas

La descarga de datos todavía no está disponible.

Citas

Torre LA, Siegel RL, Ward EM, Jemal A. Global cancer incidence and mortality rates and trendsan update. Cancer Epidemiol Biomarkers Prev 2016; 25(1):16-27.

Arvelo F, Sojo F and Cotte C. Cancer and the metastatic substrate. ecancermedi-calscience 2016; 10:701. doi: 10.3332/ ecancer.2016.701.

Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 2011; 144(5):646-674.

Knights AJ, Funnell AP, Crossley M, Pearson RC. Holding tight: cell junctions and cancer spread. Trends Cancer Res 2012; 8:61-69.

Kamińska K, Szczylik C, Bielecka ZF, Bartnik E, Porta C, Lian F, Czarnecka AM. The role of the cell-cell interactions in cancer progression. J Cell Mol Med 2015; 19(2):283-96. doi: 10.1111/jcmm.12408.

Lopez-Otin C, Matrisian LM. Emerging roles of proteases in tumour suppression. Nat Rev Cancer 2007; 7: 8000-8008.

Pezzella F, Harris AL, Tavassoli M, Gatter KC. Blood vessels and cancer much more than just angiogenesis. Cell Death Discov 2015; 1:15064 doi: 10.1038/cddiscovery.2015.64. eCollection 2015.

Arvelo F, Sojo F, Cotte C. Tumour progression and metástasis. ecancermedicals- cience 2016; 10:617 doi: 10.3332/ecan- cer.2016.617.

Reymond N, d’Agua BB, Ridle AJ. Crossing the endothelial barrier during metastasis. Nat Rev Cancer 2013; 13(12):858-870.

Thiery JP, Sleeman JP. Complex networks orchestrate epithelial mesenchymal transitions. Nat Rev Mol Cell Biol 2006; 7(2):131-142.

Kalluri R, Weinberg RA. The basics of epithelial-mesenchymal transition. J Clin Invest 2009; 119(6):1420-1428.

Nieto MA, Cano A. The epithelial-mesenchymal transition under control: global programs to regulate epithelial plasticity. Semin Cancer Biol 2012; 22(5- 6):361-368.

Nieto MA, Huang RY, Jackson RA, Thiery JP. EMT 2016: Cell 2016; 166(1):21-45.

Hay ED. An overview of epithelio-mesenchymal transformation. Acta Anat (Basel) 1995; 154(1): 8-20.

Hay ED. The mesenchymal cell, its role in the embryo, and the remarkable signaling mechanisms that create it. Dev Dyn 2005; 233(3):706-720.

Tian X, Liu Z, Niu B, Zhang J, Tan TK, Lee SR, Zhao Y, Harris DCH, Zheng G. E-cadherin/beta-catenin complex and the epithelial barrier. J Biomed Biotechnol 2011; 567305 doi: 10.1155/2011/567305.Epub 2011 Oct 11.

Jamieson C, Sharma M, Henderson BR. Targeting the beta-catenin nuclear transport pathway in cancer. Semin Cancer Biol 2014; 27:20-29.

Owusu BY, Galemmo R, Janetka J, Klampfer L. Hepatocyte growth Factor, a key tumor-promoting factor in the tumor microenvironment. Cancers (Basel) 2017; 9(4) doi: 10.3390/cancers9040035.

Kim J, Kong J, Chang H, Kim H, Kim A. EGF induces epithelial-mesenchymal transition through phospho-Smad2/3-Snail signaling pathway in breast cancer cells. Oncotarget 2016; 7(51):85021-85032

Wu Q, Hou X, Xia J, Qian X, Miele L, Sarkar FH, Wang Z. Emerging roles of PDGF-D in EMT progression during tumorigenesis. Cancer Treat Rev 2013; 39(6):640-646.

Katsuno Y, Lamouille S, Derynck R. TGF- beta signaling and epithelial-mesenchymal transition in cancer progression. Curr Opin Oncol 2013; 25(1):76-84.

Cano A, Pérez-Moreno MA, Rodrigo I, Locascio A, Blanco MJ, del Barrio MG, Portillo F, Nieto MA. The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression. Nat Cell Biol 2000; 2(2):76-83.

Sánchez-Tilló E, Lázaro A, Torrent R, Cuatrecasas M, Vaquero EC, Castells A, Engel P, Postigo A. ZEB1 represses E-cadherin and induces an EMT by recruiting the SWI/SNF chromatin-remodeling protein BRG1. Oncogene 2010; 29(24):3490-3500.

Petrova YI, Schecterson L, Gumbiner BM. Roles for E-cadherin cell surface regulation in cancer. Mol Biol Cell 2016; 27(21):3233-3244.

Tomita K, van Bokhoven A, van Leenders GJ, Ruijter ET, Jansen CF, Bussemakers MJ, Schalken JA. Cadherin switching in human prostate cancer progression. Cancer Res 2000; 60(13):3650-3654.

Yan X, Yan L, Liu S, Shan Z, Tian Y, Jin Z. N-cadherin, a novel prognostic biomarker, drives malignant progression of colorectal cancer. Mol Med Rep 2015; 12(2):2999-3006.

Bryan RT, Tselepis C. Cadherin switching and bladder cancer. J Urol 2010; 184(2):423-431.

Cavallaro U, Christofori G. Cell adhesion and signalling by cadherins and IgCAMs in cancer. Nat Rev Cancer 2004; 4(2):118-132.

Chaffer CL, San Juan BP, Lim E, Weinberg RA. EMT, cell plasticity and metastasis. Cancer Metastasis Rev 2016; 35(4):645-654.

Arvelo F. Micrometastasis: Estrategias para su detección. Invest Clinc 2013; 54: 206-225.

Bednarz-Knoll N, Alix-Panabieres C, Pantel K. Plasticity of disseminating cancer cells in patients with epithelial malignancies. Cancer Metastasis Rev 2012; 31(3-4):673-687.

Gupta PB, Mani S, Yang J, Hartwell K, Weinberg RA. The evolving portrait of cancer metastasis. Cold Spring Harb Symp Quant Biol 2005; 70:291-297.

Greco FA, Hainsworth JD. Introduction: unknown primary cancer. Semin Oncol 2009; 36(1): 6-7.

Marcucci F, Stassi G, De Maria R. Epithelial-mesenchymal transition: a new target in anticancer drug discovery. Nat Rev Drug Discov 2016; 15: 311-325.

Yang D, Sun Y, Hu L, Zheng H, Ji P, Pecot CV, Zhao Y, Reynolds S, Cheng H, Rupaimoole R, Cogdell D, Nykter M, Broaddus R, Rodriguez-Aguayo C, Lopez-Berestein G, Liu J, Shmulevich I, Sood AK, Chen K, Zhang W. Integrated analyses identifya master microRNA regulatory network for the mesenchymal subtype in serous ovarian cancer. Cancer Cell 2013; 23(2): 186-199.

Ocaña OH, Córcoles R, Fabra A, Moreno- Bueno G, Acloque H, Vega S, Barrallo-Gimeno A, Cano A, Angela Nieto M. Metastatic colonization requires the repression of the epithelial-mesenchymal transition inducer Prrx1. Cancer Cell 2012; 22(6):709-724.

Cao ZQ, Wang Z, Leng P. Aberrant N-cadherin expression in cancer. Biomed Pharmacother 2019; 118:109320. doi: 10.1016/j.biopha.2019.109320.

Gloushankova NA, Rubtsova SN, Zhitnyak IY. Cadherin-mediated cell-cell interactions in normal and cancer cells. Tissue Barriers 2017; 3; 5(3): e1356900 doi: 10.1080/21688370.2017.1356900. Epub 2017 Jul 20.

Shewan AM, Maddugoda M, Kraemer A, Stehbens SJ, Verma S, Kovacs EM, Yap AS. Myosin 2 is a key Rho kinase target necessary for the local concentration of E- cadherin at cell-cell contacts. Mol Biol Cell 2005;16(10):4531-4542.

Sun BO, Fang Y, Li Z, Chen Z, Xiang J. Role of cellular cytoskeleton in epithelial- mesenchymal transition process during cancer progression. Biomed Rep 2015; 3(5):603-610.

Oyanagi J, Ogawa T, Sato H, Higashi S, Miyazaki K. Epithelial-mesenchymal transition stimulates human cancer cells to extend microtubule-based invasive protrusions and suppresses cell growth in collagen gel. PLoS One 2012; 7(12): e53209 doi: 10.1371/journal.pone.0053209. Epub 2012 Dec 31.

Lu Y, Chen J, Min Xiao, Li W, Miller DD. An overview of tubulin inhibitors that interact with the colchicine binding site. Pharm Res 2012; 29(11): 2943-2971.doi: 10.1007/s11095-012-0828-z.

Lamberth C, Kessabi FM, Beaudegnies R, Quaranta L, Trah S, Berthon G, Cederbaum F, Knauf-Beiter G, Grasso V, Bieri S, Corran A, Thacker U. Synthesis and fungicidal activity of quinolin-6-yloxyace-tamides, a novel class of tubulin polymerization inhibitors. Bioorg Med Chem 2014; 22(15):3922-3930.

Sharma A, Saez-Calvo G, Olieric N, Balaguer FA, Barasoain I, Lamberth C, Díaz JF, Steinmetz MO. Quinolin-6-yloxyace tamides are microtubule destabilizing agents that bind to the colchicine site of tubulin. Int J Mol Sci 2017; 18(7): 1336. doi: 10.3390/ijms18071336.

Stanton RA, Gernert KM, Nettles JN, Aneja R. Drugs that target dynamic microtubules: a new molecular perspective. Med Res Rev 2011; 31(3): 443-81. doi: 10.1002/med.20242.

Mendonsa AM, Na TY, Gumbiner BM. E- cadherin in contact inhibition and cancer. Oncogene 2018; 37(35):4769-4780.

Kourtidis A, Lu R, Pence LJ, Anastasiadis PZ. A central role for cadherin signaling in cancer. Exp Cell Res 358; (1):78-85. doi: 10.1016/j.yexcr.2017.04.006.

Ming Wong SH, Fang CM, Chuah LH, Leong CO, Ngai SC. E-cadherin: Its dysregulation in carcinogenesis and clinical implications. Crit Rev Oncol Hematol 2018; 121:11-22. doi: 10.1016/j.critre- vonc.2017.11.010.

Canel M, Serrels A, Frame MC, Brunton VG. E-cadherin-integrin crosstalk in cancer invasion and metastasis. J Cell Sci 2013; 126 (Pt2):393-401. doi: 10.1242/jcs.100115.Epub 2013 Mar 22.

Lo W, Zhu B, Sabesan A, Wu HH, Powers A, Sorber RA, Ravichandran S, Chen I, McDuffie LA, Quadri HS, Beane JD, Calzone K, Miettinen MM, Hewitt SH, Koh C, Heller T, Wacholder S, Rudloff U. Associations of CDH1 germline variant location and cancer phenotype in families with hereditary diffuse gastric cancer (HDGC). J Med Genet 2019; 56(6):370-379. doi:10.1136/jmedgenet-2018-105361.

Wu X, Yao X, Cao Q. Clinicopathological and prognostic significance of CDH1hy- permethylation in hepatocellular carcinoma: a meta-analysis. Cancer Manag 2019; 11:857. doi: 10.2147/CMAR.S179710.eCollection 2019.

Serrano-Gomez SJ, Maziveyi M, Alahari SK. Regulation of epithelial mesenchymal transition through epigenetic and post- translational modifications. Mol Cancer 2016; 15:18. doi: 10.1186/s12943-016-0502-x.

Behrens J, Vakaet L, Friis R, Winterhager E, Van Roy F, Mareel MM, Birchmeier W. Loss of epithelial differentiation and gain of invasiveness correlates with tyrosine phosphorylation of the E-cadherin/betacatenin complex in cells transformed with a temperature-sensitive v-SRC gene. J Cell Biol 1993; 120(3):757-766.

Dupre-Crochet S, Figueroa A, Hogan C, Ferber EC, Bialucha CU, Adams J, Richardson ECN, Fujita Y. Casein kinase 1 is a novel negative regulator of E-cadherin-based cell-cell contacts. Mol Cell Biol 2007; 27(10):3804-3816.

Nawrocki-Raby B, Gilles C, Polette M, Bruyneel E, Laronze JY, Bonnet N, Foidart JM, Mareel M, Birembaut P. Upregulation of MMPs by soluble E-cadherin in human lung tumor cells. Int J Cancer 2003; 105(6):790-795.

Li S, Luo W. Matrix metalloproteinase 2 contributes to aggressive phenotype, epithelial-mesenchymal transition and poor outcome in nasopharyngeal carcinoma. Onco Targets Ther 2019; 12: 5701-5711. doi: 10.2147/OTT.S202280. eCollection 2019.

Morgan MR, Byron A, Humphries MJ, Bass MD. Giving off mixed signals--distinct functions of alpha5beta1 and alphavbeta3 integrins in regulating cell behavior. IUBMB Life 2009; 61: 731–738.

Levental KR, Yu H, Kass L, Lakins JN, Egeblad M, Erler JT, Fong SFT, Csiszar K, Giaccia A, Weninger W, Yamauchi M, Gasser DL, Weaver VM. Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell 2009; 139(5):891-906. doi: 10.1016/j.cell.2009.10.027.

Hocevar BA, Brown TL, Howe PH. TGF- beta induces fibronectin synthesis through a c-Jun N-terminal kinase-dependent, Smad4-independent pathway. EMBO J 1999; 18: 1345-1356.

Maschler S, Wirl G, Spring H, Bredow DV, Sordat I, Beug H, Reichmann E. Tumor cell invasiveness correlates with changes in integrin expression and localization. Oncogén 2005; 24: 2032–2041.

Bachmann M, Kukkurainen S, HytönenVP, Wehrle-Haller B. Cell Adhesion by Integrins. Physiol Rev 2019; 99(4):1655-1699. doi: 10.1152/physrev.00036.2018.

Wendt MK, Smith JA, Schiemann WP. p130Cas is required for mammary tumor growth and transforming growth factor-beta-mediated metastasis through regulation of Smad2/3 activity. J BiolChem 2009; 284(49):34145-34156.

Wendt MK, Smith JA, Schiemann WP. Implication of collagen type I-induced membrane-type 1-matrix metalloproteina- se expression and matrix metalloproteina- se-2 activation in the metastatic progression of breast carcinoma. Lab Invest 1997; 76(5):651-660.

Vallés AM, Boyer B, Tarone G, Thiery JP. Alpha 2 beta 1 integrin is required for the collagen and FGF-1 induced cell dispersion in a rat bladder carcinoma cell line. Cell Adhes Commun 1996; 4(3): 187-199. doi: 10.3109/15419069609014222.

Medici D, Nawshad A. Type I collagen promotes epithelial-mesenchymal transition through ILK-dependent activation of NF-kappaB and LEF-1. Matrix Biol 2010; 29(3):161-5. doi: 10.1016/j.mat-bio.2009.12.003.Epub 2009 Dec 16.

Shintani Y, Hollingsworth MA, Wheelock MJ. Collagen I promotes metastasis in pancreatic cancer by activating c-Jun NH(2)-terminal kinase 1 and up-regulating N-cadherin expression. Cancer Res 2006; 66(24):11745-53. doi: 10.1158/0008-5472.CAN-06-232.

Shintani Y, Fukumoto Y, Chaika N, Svoboda R, Wheelock MJ, Johnson KR. Collagen I-mediated up-regulation of N-cadherin requires cooperative signals from integrins and discoidin domain receptor 1. J Cell Biol 2008; 180(6):1277-1289. doi: 10.1083/jcb.200708137.

Weinberg RA. EMT, CSCs, and drug resistance: the mechanistic link and clinical implications Nat Rev Clin Oncol 2017; 14(10): 611-629. doi: 10.1038/nrclinonc.2017.44.

Barbato L, Bocchetti M, Biase AD, Regad T. Cancer Stem cells and targeting strategies. Cells 2019; 8(8): 926. doi: 10.3390/ cells8080926.

Nantajit D, Lin D, Li JJ. The network of epithelial-mesenchymal transition: potential new targets for tumor resistance. J Cancer Res Clin Oncol 2015; 141(10):1697-713

Li Z, Yin S, Zhang L. Prognostic value of reduced E-cadherin expression in breast cancer: a meta-analysis. Oncotarget 2017; 8(10):16445-16455.

Xu W, Yu M, Qin J, Luo Y, Zhong M. LACTB regulates PIK3R3 to promote autophagy and inhibit EMT and proliferation through the PI3K/AKT/mTOR signaling pathway in colorectal cancer. Cancer Manag Res 2020 12:5181-5200. doi 10.2147/CMAR.S250661. eCollection 2020.

Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, Henkelman RM, Cusimano MD, Dirks PB. Identification of human brain tumour initiating cells. Nature 2004; 432: 396–340.

Huber MA, Krau N, Beug H. Molecular requirements for epithelial-mesenchymal transition during tumor progression. Curr Opin Cell Biol 2005; 17: 548–558.

Dongre A, Weinberg RA. New insights into the mechanisms of epithelial-mesenchymal transition and implications for cancer. Nat Rev Mol Cell Biol 2019; 20(2):69-84. doi: 10.1038/s41580-018-0080-4.

Singh A, Settleman J. EMT, cancer stem cells and drug resistance: An emerging axis of evil in the war on cancer. Oncogene 2010, 29, 4741–4751.

Regad T. Tissue-specific cancer stem cells: ¿Reality or a mirage? Transl Med Reports 2017; 1(1): 6535. doi: 10.4081/tmr.6535.

Gottesman MM, Lavi O, Hall MD, Gillet JP. Towards a better understanding of the complexity of cancer drug resistance. Annu Rev Pharmacol Toxicol 2016; 56:85–102.

Zhao J. Cancer stem cells and chemoresistance: the smartest survives the raid. Pharmacol Ther 2016; 160:145–158.

Fukuda K, Saikawa Y, Ohashi M, Kumagai K, Kitajima M, Okano H, Matsuzaki Y, Kitagawa Y. Tumor initiating potential of side population cells in human gastric cancer. Int J Oncol 2009; 34:1201–1207.

Hermann PC, Huber SL, Herrler T, Aicher A, Ellwart JW, Guba M, Bruns CJ, Heeschen C. Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell 2007; 1:313–323.

Moore N, Houghton J, Lyle S. Slow-cycling therapy-resistant cancer cells. Stem Cells Dev 2012; 21:1822–1830.

Ajani JA, Song S, Hochster HS, Steinberg IB. Cancer stem cells: The promise and the potential. Semin Oncol 2015;42: S3–S17.

Abdullah LN, Chow EK-H. Mechanisms of chemoresistance in cancer stem cells. Clin Transl Med 2013; 2(1):3. doi: 10.1186/2001-1326-2-3.

Begicevic RR, Falasca M. ABC Transporters in cancer stem cells: beyond chemoresistance. Int J Mol Sci 2017; 18(11):2362. doi: 10.3390/ijms18112362.

Zhou SF, Wang LL, Di YM, Xue CC, Duan W, Li CG, Li Y. Substrates and inhibitors of human multidrug resistance associated proteins and the implications in drug development. Curr Med Chem 2008; 15:1981–2039.

Xi G, Hayes E, Lewis R, Ichi S, Mania-Farnell B, Shim K, Takao T, E Allender E, Mayanil CS, Tomita T. CD133 and DNA- PK regulate MDR1 via the PI3K- or Akt-NF-κB pathway in multidrug-resistant glioblastoma cells in vitro. Oncogene 2015; 35:241–250.

Huang B, Fu SJ, Fan WZ, Wang ZH, Chen ZB, Guo SJ, Chen JX, Qiu SP. PKCε inhibits isolation and stemness of side population cells via the suppression of ABCB1 transporter and PI3K/Akt, MAPK/ERK signaling in renal cell carcinoma cell line 769P. Cancer Lett 2016; 376:148–154.

Saxena M, Stephens MA, Pathak H, Rangarajan A. Transcription factors that mediate epithelial-mesenchymal transition lead to multidrug resistance by upregulating ABC transporters. Cell Death Dis 2011; 2 (7): e179. doi:10.1038.

Fitzgerald TL, Rangan S, Dobbs L, Starr S, Sigounas G. The impact of aldehyde dehydrogenase 1 expression on prognosis for metastatic colon cancer. J Surg Res 2014; 192:82–89.

Vogler T, Kriegl L, Horst D, Engel J, Sagebiel S, Schäffauer AJ, Kirchner T, Jung The expression pattern of aldehyde dehydrogenase 1 (ALDH1) is an independent prognostic marker for low survival in colorectal tumors. Exp Mol Pathol 2012; 92:111–117.

Siyuan Q, Jingwen J, Lu Y, Nice EC, Huang C, Zhang J, He W. Emerging role of tumor cell plasticity in modifying therapeutic response. Signal Transduct Target Ther 2020; 5(1): 228. doi: 10.1038/ s41392-020-00313-5.

Wang YH, Scadden DT. Harnessing the apoptotic programs in cancer stemlike cells. EMBO Rep 2015; 16:1084–1098.

Tao J, Qiu B, Zhang D, Wang Y. Expression levels of Fas/Fas-L mRNA in human brain glioma stem cells. Mol Med Rep 2012; 5:1202–1206.

Luna-Vargas MPA, Edward Chipuk J. Physiological and pharmacological control of BAK, BAX, and beyond. Trends Cell Biol 2016; 26(12):906-917. doi: 10.1016/j.tcb.2016.07.002.Epub 2016 Aug 4.

Maugeri-Saccà M, Bartucci M, De Maria R. DNA Damage repair pathways in cancer stem cells. Mol Cancer Ther 2012; 11:1627–1636.

Ronco C, Martin AR, Demange L, Benhida R. ATM, ATR, CHK1, CHK2 and WEE1 inhibitors in cancer and cancer stem cells. Med Chem Comm 2016; 8(2):295-319.

Morrison SJ, Spradling AC. Stem cells and niches: mechanisms that promote stem cell maintenance throughout life. Cell 2008; 132:598–611.

Plaks V, Kong N, Werb Z. The Cancer stem cell niche: how essential is the niche in regulating stemness of tumor cells? Cell Stem Cell 2015; 16:225–238.

Prieto-Vila M, Takahashi RU, Usuba W, Kohama I, Ochiya T. Drug resistance driven by cancer stem cells and their niche. Int J Mol Sci 2017; 18(12):2574. doi: 10.3390/ijms18122574.

Najafi M, Farhood B, Mortezaee K. Cancer stem cells (CSCs) in cancer progression and therapy. J Cell Physiol 2018; 234:8381–8395.

Zhuang J, Lu Q, Shen B. Huang X, Shen L, Zheng X, Huang R, Yan J, Guo H. TGFβ1 secreted by cancer-associated fibroblasts induces epithelialmesenchymal transition of bladder cancer cells through lncRNA-ZEB2NAT. Sci Rep 2015; 5:11924.doi: 10.1038/srep11924.

Cabarcas SM, Mathews LA, Farrar WL. The cancer stem cell niche there goes the neighborhood? Int J Cancer 2011; 129:2315–2327.

Buczek ME, Miles AK, Green W, Johnson C, Boocock DJ, Pockley AG, Rees RC, Hulman G, van Schalkwyk G, Parkinson R, Hulman J, Powe DG, Regad T. Cytoplasmic PML promotes TGF-β-associated epithelial–mesenchymal transition and invasion in prostate cancer. Oncogene 2015; 35:3465–3475.

Kitamura T, Qian BZ, Pollard JW. Immune cell promotion of metastasis. Nat Rev Immunol 2015; 15:73–86.

Ridge SM, Sullivan FJ, Glynn SA. Mesenchymal stem cells: key players in cancer progression. Mol Cancer 2017; 16(1):31. doi: 10.1186/s12943-017-0597-8.

Duda DG, Duyverman AMMJ, Kohno M., Snuderl M, Steller EJA, Fukumura D, Jain RK. Malignant cells facilitate lung metas- tasis by bringing their own soil. Proc Natl Acad Sci USA 2010; 107:21677–21682.

Li W, Zhou Y, Yang J, Zhang X, Zhang H, Zhang T, Zhao S, Zheng P, Huo J, Wu H. Gastric cancer-derived mesenchymal stem cells prompt gastric cancer progression through secretion of interleukin-8. J Exp Clin Cancer Res 2015; 34(1):52 doi: 10.1186/s13046-015-0172-3.

Spaeth EL, Dembinski JL, Sasser AK, Watson K, Klopp A, Hall B, Andreeff M, Marini F. Mesenchymal stem cell transition to tumor-associated fibroblasts contributes to fibrovascular network expansion and tumor progression. PLoS ONE 2009; 4: e4992. doi: 10.1371/journal. pone.0004992. Epub 2009 Apr 7.

Peng Y, Li Z, Li Z. GRP78 secreted by tumor cells stimulates differentiation of bone marrow mesenchymal stem cells to cancer-associated fibroblasts. Biochem Biophys Res Commun 2013; 440:558–563.

Hida K, Maishi N, Annan DA, Hida Y. Contribution of tumor endothelial cells in cancer progression. Int J Mol Sci 2018; 19(5):1272. doi: 10.3390/ijms19051272.

Fessler E, Borovski T, Medema JP. Endothelial cells induce cancer stem cell features in differentiated glioblastoma cells via bFGF. Mol Cancer 2015; 14:157.

Butler JM, Kobayashi H, Rafii S. Instructive role of the vascular niche in promoting tumour growth and tissue repair by angiocrine factors. Nat Rev Cancer 2010; 10:138–146.

Arvelo F, Cotte C. Hypoxia in cancer malignity. Review. Invest Clin 2009; 50:529-546.

Klymkowsky MW, Savagner P. Epithelial-mesenchymal transition: a cancer researcher’s conceptual friend and foe. Am J Pathol 2009; 174(5):1588-1593. doi: 10.2353/ajpath.2009.080545.

Welford SM, Giaccia AJ. Hypoxia and senescence: the impact of oxygenation on tumor suppression. Mol Cancer Res 2011; 9: 538–544.

Katoh M, Katoh M. Integrative genomic analyses of ZEB2: Transcriptional regulation of ZEB2 based on SMADs, ETS1, HIF1alpha, POU/OCT, and NF-kappaB. Int J Oncol 2009; 34(6):1737-1742. doi:10.3892/ijo 00000304.

Tirpe AA, Gulei D, Ciortea SM, Crivii C, Berindan-Neagoe I. Hypoxia: overview on hypoxia-mediated mechanisms with a focus on the role of HIF genes. Int J Mol Sci 2019; 20(24): 6140. doi: 10.3390/ijms20246140.

Zavadil J, Bottinger EP. TGF-beta and epithelial-to-mesenchymal transitions. Oncogene 2005; 24(37):5764-5774. doi: 10.1038/sj.onc.1208927.

Chuang MJ, Sun KH, Tang SJ Deng MW, Wu YH, Sung JS, Cha TL, Sun GH. Tumor-derived tumor necrosis factor-alpha promotes progression and epithelial-mes- enchymal transition in renal cell carcinoma cells. Cancer Sci 2008; 99(5):905-913. doi: 10.1111/j.1349-7006.2008.00756. x.Epub 2008 Feb 18.

Sullivan NJ, Sasser AK, Axel AE, Vesuna F, Raman V, Ramirez N, Oberyszyn TM, Hall BM. Interleukin-6 induces an epithelial-mesenchymal transition phenotype in human breast cancer cells. Oncogene 2009; 28(33): 2940-2947. doi: 10.1038/ onc.2009.180.

Han YL, Chen L, Qin R, Wang GQ, Lin XH, Dai GH. Lysyl oxidase and hypoxia-inducible factor 1α: biomarkers of gastric cancer. World J Gastroenterol 2019; 25(15): 1828- 1839. doi: 10.3748/wjg. v25.i15.1828.

Gupta R, Chetty C, Bhoopathi P. Downregulation of uPA/uPAR inhibits intermittent hypoxia-induced epithelial-mesenchymal transition (EMT) in DAOY and D283 medulloblastoma cells. Int J Oncol 2011; 38(3): 733-744. doi: 10.3892/ijo.2010.883.

McMillin DW, Negri JM, Mitsiades CS. The role of tumour-stromal interactions in modifying drug response: challenges and opportunities. Nat Rev Drug Discov 2013; 12(3): 217-28. doi: 10.1038/nrd3870.

Malanchi I, Santamaria-Martinez A, Susanto E, Peng H, Lehr HA, Delaloye JF, Huelsken J. Interactions between cancer stem cells and their niche govern metastatic colonization. Nature 2011; 481(7379):85-89. doi: 10.1038/natu- re10694.

Straussman R, Morikawa T, Shee K, Barzily-Rokni M, Qian ZR, Du J, Davis A, Mongare MM, Gould J, Frederick DT, Cooper ZA, Chapman PB, Solit DB, Ribas A, Lo RS, Flaherty KT, Ogino S, Wargo JA, Golub TR. Tumour micro-environment elicits innate resistance to RAF inhibitors through HGF secretion. Nature 2012; 487(7408):500-504. doi: 10.1038/nature11183.

Wilson TR, Fridlyand J, Yan Y, Penuel E, Burton L, Chan E, Peng J, Lin E, Wang Y, Sosman J, Ribas A, Li J, Moffat J, Sutherlin DP, Koeppen H, Merchant M, Neve R, Settleman J. Widespread potential for growth-factor-driven resistance to anticancer kinase inhibitors. Nature 2012; 487(7408): 505-509. doi: 10.1038/nature11249.

Hamidi H, Ivaska J. Every step of the way: integrins in cancer progression and metastasis. Nat Rev Cancer 2018; 18(9): 533-548. doi: 10.1038/s41568-018-0038-z.

Williams K, Motiani K, Giridhar PV, Kasper S. CD44 integrates signaling in normal stem cell, cancer stem cell and (pre)metastatic niches. Exp Biol Med 2013; 238(3): 324-338. doi: 10.1177/1535370213480714.

Zhang L, Huang G, Li X, Zhang Y, Jiang Y, Shen J, Liu J, Wang Q, Jin Zhu J, Feng X, Dong J, Qian C. Hypoxia induces epithelial-mesenchymal transition via activation of SNAI1 by hypoxia-inducible factor- 1alpha in hepatocellular carcinoma. BMC Cancer 2013; 13: 108. doi: 10.1186/1471-2407-13-108.

Akl H, Bultynck G. Altered Ca2+ signaling in cancer cells: proto-oncogenes and tumor suppressors targeting IP3 receptors. Biochim Biophys Acta 2013; 1835: 180–193.

Davis FM, Azimi I, Faville RA, Peters AA, Jalink K, Putney Jr JW, Goodhill GJ, Thompson EW, Roberts-Thomson SJ, Monteith GR. Induction of epithelial- mesenchymal transition (EMT) in breast cancer cells is calcium signal dependent. Oncogene 2013; 33:2307–2316.

Pellegatti P, Raffaghello L, Bianchi G. Increased level of extracellular ATP at tumor sites: in vivo imaging with plasma membrane luciferase. PLoS One 2008; 3: e2599 doi: 10.1371/journal.pone.0002599.

Burnstock G, Di VF. Purinergic signalling and cancer. Purinergic Signal 2013;9: 491–540.

Azimi I, Milevskiy MJG, Kaemmerer E, Turner D, Yapa KTDS, Brown MA, Thompson EW, Roberts-Thomson SJ, Monteith GR. TRPC1 is a differential regulator of hypoxia mediated events and Aktsignalling in PTEN deficient breast cancer cells. J Cell Science 2017; 130: 2292 -2305.

Zielinska HA, Bahl A, Holly JMP and Perks CM. Epithelial-to-mesenchymal transition in breast cancer: a role for insulin-like growth factor I and insulin-like growth factor–binding protein 3? Breast Cancer (Dove Med Press) 2015; 7: 9–19.

Sweeney EE, Fan P, Jordan VC. Mechanisms underlying differential response to estrogen-induced apoptosis in long-term estrogen-deprived breast cancer cells. Int J Oncol 2014; 44(5):1529-1538. doi: 10.3892/ijo.2014.2329.

Cevenini A, Orrù S, Mancini A, Alfieri A, Buono P, Imperlini E. Molecular signatures of the insulin-like growth factor 1-mediated epithelial-mesenchymal transition in breast, lung and gastric cancers. Int J Mol Sci 2018; 19(8): 2411. doi: 10.3390/ijms19082411.

Peruzzi F, Prisco M, Dews M, Salomoni P, Grassilli E, Romano G, Calabretta B, Baserga R. Multiple signaling pathways of the insulin-like growth factor 1 receptor in protection from apoptosis. Mol Cell Biol 1999; 19:7203–7215.

Kim HJ, Litzenburger BC, Cui X, Delgado DA, Grabiner BC, Lin X, Lewis MT, Gottardis MM, Wong TW, Attar RM, Carboni JM, Lee AV. Constitutively active type I insulin-like growth factor receptor causes transformation and xenograft growth of immortalized mammary epithelial cells and is accompanied by an epithelial-to-mesenchymal transition mediated by NF-kappaB and snail. Mol Cell Biol 2007; 27:3165–3175.

Long L, Rubin R, Brodt P. Enhanced invasion and liver colonization by lung carcinoma cells overexpressing the type 1 insulin-like growth factor receptor. Exp Cell Res1998; 238:116–121.

Delort L, Rossary A, Farges MC, Marie- Paule Vasson P, Caldefie-Chézet F. Leptin, adipocytes and breast cancer: Focus on inflammation and anti-tumor immunity. Life Sci 2015; 140:37–48.

Newman G, Gonzalez-Perez RR. Leptin cytokine crosstalk in breast cancer. Mol Cell Endocrinol 2014; 382:570–582.

Wang L, Tang C, Cao H, Li K, Pang X, Zhong L, Dang W, Tang H, Huang Y, Wei L, Su M, Chen T. Activation of IL -8 via PI3K/Akt-dependent pathway is involved in leptin-mediated epithelial-mesenchymal transition in human breast cancer cells. Cancer Biol Ther 2015; 16:1220–1230.

Isaías-Tizapa R, Acosta E, Tacuba-Saavedra A, Mendoza-Catalán M, Navarro-Tito N. Leptin induced Hic-5 expression and actin punctuan formation by the FAK-Src dependent pathway in MCF10A mammary epithelial cells. Biomedica 2019; 39(3):547–560.

Maximus PS, Achkar ZA, Hamid PF, Hasnain SS, Peralta CA. Adipocytokines: are they the theory of everything? Cytokine 2020; 133: 155144. Published online 2020 Jun 16. doi: 10.1016/j.cyto.2020.155144.

Andò S, Gelsomino L, Panza S, Giordano C, Bonofiglio D, Barone I, Catalano S. Obesity, leptin and breast cancer: Epidemiological evidence and proposed mechanisms. Cancers 2019; 11(1): 62. doi: 10.3390/cancers11010062.

Delort L, Jarde T, Dubois V, Vasson MP, Caldefie-Chézet F. New insights into anti-carcinogenic properties of adiponectin: a potential therapeutic approach in breast cancer? Vitam Horm 2012; 90: 397–417.

Tan W, Wang L, Ma Q, Qi M, Lu N, Zhang L, Han B. Adiponectin as a potential tumor suppressor inhibiting epithelial-to-mesenchymal transition but frequently silenced in prostate cancer by promoter methylation. Prostate 2015; 75(11): 1197- 1205. doi: 10.1002/pros.23002. Epub 2015 Apr 15.

Liao Q, Long C, Deng Z, Bi X, Hu J. The role of circulating adiponectin in prostate cancer: a meta-analysis. Int J Biol Markers 2015; 30: e22–31. doi: 10.5301/ jbm.5000124.

Gao Q, Yao X, Zheng J. MiR-323 inhibits prostate cancer vascularization through adiponectin receptor. Cell Physiol Bio-chem 2015; 36: 1491–1498.

Fu S, Xu H, Gu M, Liu C, Wang Q, Wan X, Chen Y, Chen Q, Peng Y, Cai Z, Zhou J, Wang Z. Adiponectin deficiency contributes to the development and progression of benign prostatic hyperplasia in obesity. Sci Rep 2017;7:43771. doi: 10.1038/srep43771.

Illiano M, Nigro E, Sapio L, Caiafa I, Spina A, Scudiero O, Bianco A, Esposito S, Mazzeo F, Pedone PV, Daniele A, NaviglioS. Adiponectin down-regulates CREB and inhibits proliferation of A549 lung cancer cells. Pulm Pharmacol Ther 2017; 45:114–120.

Dossus L, Franceschi S, Biessy C, Navionis AS, Travis RC, Weiderpass E, Scalbert A, Romieu I, Tjønneland A, Olsen A, Overvad K, Boutron-Ruault MC, Bonnet F, Fournier A, Fortner RT, Kaaks R, Aleksandrova K, Trichopoulou A, Vecchia CL, Peppa E, Tumino R, Panico S, Palli D, Agnoli C, Vineis P, Bueno-de- Mesquita A, Peeters PH, Skeie G, Zamora-Ros R, Chirlaque MD, Ardanaz E, Sánchez MJ, Quirós JR, Dorronsoro M, Sandström M, Nilsson LM, Schmidt JA, Khaw KT, Tsilidis KK, Aune D, Riboli E, Rinaldi S. Adipokines and inflammation markers and risk of differentiated thyroid carcinoma: The EPIC study. Int J Cancer 2018; 142:1332–1342.

Porcile C, Di Zazzo E, Monaco M, D’Angelo G, Passarella D, Russo C, Di Costanzo A, Pattarozzi A, Gatti M, Ba- jetto A, Zona G, Barbieri F, Oriani G, Moncharmont B, Florio T, Daniele A. Adiponectin as novel regulator of cell prolife- ration in human glioblastoma. J Cell Physiol 2014; 229:1444–1454.

Planas-Silva MD, Waltz PK. Estrogen promotes reversible epithelial-to-mesenchymal-like transition and collective motility in MCF-7 breast cancer cells. J Steroid Bio- chem Mol Biol 2007; 104:11–21.

Ye Y, Xiao Y, Wang W, Yearsley K, Gao JX, Shetuni B, Barsky SH. ERα signaling through slug regulates E-cadherin and EMT. Oncogene 2010; 29:1451–1462.

Mak P, Leav I, Pursell B, Bae D, Yang X, Taglienti CA, Gouvin LM, Sharma VM, Mercurio AM. ERβ impedes prostate cancer EMT by destabilizing HIF-1α and inhibiting VEGF-mediated snail nuclear localization: implications for Gleason grading. Cancer Cell 2010; 17:319–332.

Huang Y, Hoque MO, Wu F, Trink B, Sidransky D, Ratovitski EA. Midkine induces epithelial-mesenchymal transition through the Notch2-Jak2-Stat3 signaling in human keratinocytes. Cell Cycle 2008; 7:1613–1622.

Güngör C, Zander H, Effenberger KE, Vashist YK, Kalinina T, Izbicki JR, Yekebas E, Bockhorn M. Notch signaling activated by replication stress–induced expression of midkine drives epithelialme-senchymal transition and chemoresistance in pancreatic cancer. Cancer Res 2011; 71:5009–5019.

Zhao G, Nie Y, Lv M, He L, Wang T, Hou Y. ERβ-mediated estradiol enhances epithelial mesenchymal transition of lung adenocarcinoma through increasing transcription of midkine. Mol Endocrinol 2012; 26(8): 1304–1315.

Birtle A, Freeman A, Munson P. The androgen receptor revisited in urothelial carcinoma. Histopathology 2004; 45: 98–99.

Koo V, El Mekabaty A, Hamilton P, Maxwell P, Sharaf O, Diamond J, Watson J, Williamson K. Novel in vitro assays for the characterization of EMT in tumourigenesis. Analyt Cell Pathol 2010; 32: 67–76.

Peng CC, Chen KC, Peng RY, Su CH, Hsieh-Li HM. Human urinary bladder cancer T24 cells are susceptible to the Antrodiacamphorata extracts. Cancer Lett 2006; 243: 109–119.

Hara T, Miyazaki H, Lee A, Tran CP, Reiter RE. Androgen receptor and invasion in prostate cancer. Cancer Res 2008; 68:1128–1135.

Jitao W, Jinchen H, Qingzuo L, Lei S, Jianming W, Zhenli G. Androgen receptor inducing bladder cancer progression by promoting an epithelial mesenchymal transition. Andrologia 2014; 46(10):1128-33. doi: 10.1111/and.12203.

Liu N, Liu Y, Lee HJ, Hsu YH, Chen JH. Activated androgen receptor down regulates E-cadherin gene expression and promotes tumor metastasis. Mol Cell Biol 2008; 28: 7096-7108.

Tesei A, Castoria G. Editorial: El receptor de andrógenos en el cáncer de mama. Endocrinol Frontal (Lausana) 2020; 11: 636480.10.3389/ fendo. 2020.636480.

Zhu ML, Kyprianou N. Role of androgens and the androgen receptor in epithelial mesenchymal transition and invasion of prostate cancer cells. FASEB J 2010; 24: 769-777.

Wu K, Gore C, Yang L, Fazli L, Gleave M, Pong RC, Xiao G, Zhang L, Yun EJ, Tseng SF, Kapur P, He D, Hsieh JT. Slung, a unique androgen-regulated transcription factor, coordinates androgen receptor to facilitate castration resistance in prostate cancer. Mol Endocrinol 2012; 26: 1496-1507.

Jing Y, Cui D, Guo W, Jiang J, Jiang B, Lu Y, Zhao W, Wang X, Jiang Q, Han B, Xia S. Activated androgen receptor promotes bladder cancer metastasis via Slug mediated epithelial-mesenchymal transition. Cancer Letters 2014; http://dx.doi. org/10.1016/j.canlet.2014.03.018.

Hajra KM, Chen DYS, Fearon ER. The SLUG zinc-finger protein represses E-cad- herin in breast cancer. Cancer Res 2012; 62:1613-1618.
Publicado
2023-08-25
Cómo citar
Arvelo, F., & Sojo, F. (2023). Transición epitelio – mesenquima y cáncer.: Epithelial-mesenchymal transition and cancer. Investigación Clínica, 64(3), 379-404. https://doi.org/10.54817/IC.v64n3a10