Induced differentiation of adipose-derived stem cells enhance secretion of neurotrophic factors.

La diferenciación inducida de las células madre derivadas del tejido adiposo aumenta la secreción de factores neurotróficos.

Palabras clave: ADSC diferenciadas, células de Schwann, factores neurotróficos, P2X7, daño nervioso

Resumen

Las células madre derivadas del tejido adiposo (ADSCs) podrían ser una semilla ideal de células para la reparación de lesiones nerviosas, ya que tienen el potencial de diferenciación multidireccional. Sin embargo, aún no está claro si las ADSCs indiferenciadas o diferenciadas tienen prioridades en la promoción de la regeneración axonal y la formación de mielina. En este estudio, ADSCs primarias de las ratas fueron cultivadas y diferenciadas. Se compararon la morfología, el potencial de diferenciación y la secreción de los factores neurotróficos de las ADSCs antes y después de la inducción. Las ADSCs indiferenciadas (uADSCs) se encontraban agregadas en haces que contenían estructuras reticulares, estrelladas y poligonales. Contenían un gran número de gotitas de lípidos y fueron positivas para la tinción de Aceite Rojo O. Después de la diferenciación, las ADSCs (dADSCs) se vuelven largas y en forma de huso con un número decreciente de protuberancias alrededor de las células, crecimiento en espiral, y fueron negativas para la tinción de Aceite Rojo O. Cuando se compararon los dos grupos, análisis del citómetro de flojo muestra que los dos grupos de marcadores superficiales CD29 y CD45 eran similares; y los marcadores CD44 y CD90 eran muy bajos en el grupo indiferenciado. Los niveles de neurotrofina 3 (NT-3) y neuregulina 1 (NRG-1) y sus receptores, el receptor de tropomiosina quinasa C (TrkC) y el receptor de proteína tirosina quinasa erbB-4 (ErbB-4) en dADSC fueron más altos que los de uADSC. Mientras que las expresiones de proteína cero de mielina (P0), glicoproteína asociada a mielina (MAG) y receptor de purina P2X7 (P2X7) no fueron significativamente diferentes antes y después de la diferenciación. Se puede especular que las dADSC tienen capacidades mejoradas en la reparación nerviosa que se asocia con una mayor expresión de factores neurotróficos.

Descargas

La descarga de datos todavía no está disponible.

Biografía del autor/a

Xin Zeng, Lanzhou University, Lanzhou, Gansu, China.

School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China.

Ya-nan Liu, Lanzhou University, Lanzhou, Gansu, China.

School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China.

Zhen Li, Lanzhou University, Lanzhou, Gansu, China.

School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China.

Yun He, Lanzhou University, Lanzhou, Gansu, China.

School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China.

Fang Li, Lanzhou University, Lanzhou, Gansu, China.

School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China.

Shu-yuan Zhang, Lanzhou University, Lanzhou, Gansu, China.

The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China.

Jing Gu, Gansu University of Traditional Chinese Medicine, Lanzhou, Gansu, China.

Gansu University of Traditional Chinese Medicine, Lanzhou, Gansu, China.

Li Lu, Lanzhou University, Lanzhou, Gansu, China.

School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China.

Citas

Adams AM, VanDusen KW, Kostrominova TY, Mertens JP, Larkin LM. Scaffoldless tissue-engineered nerve conduit promotes peripheral nerve regeneration and functional recovery after tibial nerve injury in rats. Neural Regen Res 2017;12:1529-1537.

Bunge MB. Bridging areas of injury in the spinal cord. Neuroscientist 2001;7:325- 339.

Zack-Williams SD, Butler PE, Kalaskar DM. Current progress in use of adipose derived stem cells in peripheral nerve regeneration. World J Stem Cells 2015;7:51-64.

Ock SA, Baregundi Subbarao R, Lee YM, Lee JH, Jeon RH, Lee SL, Park JK, Hwang SC, Rho GJ. Comparison of immunomodulation properties of porcine mesenchymal stromal/stem cells derived from the bone marrow, adipose tissue, and dermalskin tissue. Stem Cells Int 2016;2016:9581350.

Alipour F, Parham A, Kazemi Mehrjerdi H, Dehghani H. Equine adipose-derived mesenchymal stem cells: phenotype and growth characteristics, gene expression profile and differentiation potentials. Cell J 2015;16:456-465.

Susuki K, Raphael AR, Ogawa Y, Stankewich MC, Peles E, Talbot WS,Rasband MN. Schwann cell spectrins modulate peripheral nerve myelination. Proc Natl Acad Sci U S A 2011;108:8009- 8014.

Marconi S, Castiglione G, Turano E, Bissolotti G, Angiari S, Farinazzo A, Constantin G, Bedogni G, Bedogni A, Bonetti B. Human adipose-derived mesenchymal stem cells systemically injected promote peripheral nerve regeneration in the mouse model of sciatic crush. Tissue Eng Part A 2012;18:1264-1272.

Carriel V, Garrido-Gomez J, Hernandez- Cortes P, Garzon I, Garcia-Garcia S, Saez-Moreno JA, Del Carmen Sanchez- Quevedo M, Campos A, Alaminos M. Combination of fibrin-agarose hydrogels and adipose-derived mesenchymal stem cells for peripheral nerve regeneration. J Neural Eng 2013;10:026022.

Suganuma S, Tada K, Hayashi K, Takeuchi A, Sugimoto N, Ikeda K,Tsuchiya H. Uncultured adipose-derived regenerative cells promote peripheral nerve regeneration. J Orthop Sci 2013;18:145-151.

Prockop D J. Stem cell research has only just begun. Science 2001;293:211-212. di Summa PG, Kalbermatten D F, Raffoul W, Terenghi G, Kingham PJ. Extracellular matrix molecules enhance the neurotrophic effect of Schwann cell-like differentiated adipose-derived stem cells and increase cell survival under stress conditions. Tissue Eng Part A 2013;19:368-379.

Han IH, Sun F, Choi Y, Zou F, Nam KH, Cho WH, Choi BK, Song GS, Koh K, Lee J. Cultures of Schwann-like cells differentiated from adipose-derived stem cells on PDMS/MWNT sheets as a scaffold for peripheral nerve regeneration. J Biomed Mater Res A 2015;103:3642-3648.

Zheng Z, Liu J. GDNF-ADSCs-APG embedding enhances sciatic nerve regeneration after electrical injury in a rat model. J Cell Biochem 2019;120:14971-14985.

Orbay H, Uysal A C, Hyakusoku H, Mizuno H. Differentiated and undifferen- tiated adipose-derived stem cells improve function in rats with peripheral nerve gaps. J Plast Reconstr Aesthet Surg 2012;65:657-664.

Xu Y, Zhang Z, Chen X, Li R, Li D,Feng S. A silk fibroin/collagen nerve scaffold seeded with a co-culture of Schwann cells and adipose-derived stem cells for sciatic nerve regeneration. PLoS One 2016;11:e0147184.

Kim DY, Choi YS, Kim SE, Lee JH, Kim SM, Kim YJ, Rhie JW, Jun YJ. In vivo effects of adipose-derived stem cells in inducing neuronal regeneration in Sprague-Dawley rats undergoing nerve defect bridged with polycaprolactone nanotubes. J Korean Med Sci 2014;29 Suppl 3:S183- 192.

Hsueh YY, Chang YJ, Huang T, Fan SC, Wang DH, Chen JJ, Wu CC, Lin SC. Functional recoveries of sciatic nerve regeneration by combining chitosan-coated conduit and neurosphere cells induced from adipose-derived stem cells. Biomaterials 2014;35:2234-2244.

Faroni A, Rothwell S W, Grolla A A, Terenghi G, Magnaghi V, Verkhratsky A. Differentiation of adipose-derived stem cells into Schwann cell phenotype induces expression of P2X receptors that control cell death. Cell Death Dis 2013;4:e743.

Guest JD, Rao A, Olson L, Bunge MB, Bunge RP. The ability of human Schwann cell grafts to promote regeneration in the transected nude rat spinal cord. Exp Neurol 1997;148:502-522.

Widgerow AD, Salibian AA, Lalezari S, Evans GR. Neuromodulatory nerve regeneration: adipose tissue-derived stem cells and neurotrophic mediation in peripheral nerve regeneration. J Neurosci Res 2013;91:1517-1524.

Mandawala AA, Harvey SC, Roy TK, Fowler KE. Cryopreservation of animal oocytes and embryos: Current progress and future prospects. Theriogenology 2016; 86:1637-1644.

Gook DA, Edgar DH. Human oocyte cryopreservation. Hum Reprod Update 2007;13:591-605.

Hunt CJ. Cryopreservation of human stem cells for clinical application: a review. Transfus Med Hemother 2011;38:107-123.

Robinson LR. Traumatic injury to peripheral nerves. Muscle Nerve 2000;23:863- 873.

Zochodne DW. The challenges and beauty of peripheral nerve regrowth. J Peripher Nerv Syst 2012;17:1-18.

Kim DH, Murovic JA, Tiel RL, Kline D G. Mechanisms of injury in operative brachial plexus lesions. Neurosurg Focus 2004;16:E2.

Yang G, Wang F, Li Y, Hou J, Liu D. Construction of tissue engineering bone with the co-culture system of ADSCs and VECs on partially deproteinized biologic bone in vitro: A preliminary study. Mol Med Rep 2021;23(1):58.

Liu H, Rui Y, Liu J, Gao F, Jin Y. Hyaluronic acid hydrogel encapsulated BMP- 14-modified ADSCs accelerate cartilage defect repair in rabbits. J Orthop Surg Res 2021;16:657.

Jiang LB, Lee S, Wang Y, Xu QT, Meng DH, Zhang J. Adipose-derived stem cells induce autophagic activation and inhibit catabolic response to pro-inflammatory cytokines in rat chondrocytes. Osteoarthritis Cartilage 2016;24:1071-1081.

Lin YJ, Lee YW, Chang CW, Huang CC. 3D spheroids of umbilical cord blood MSC- derived Schwann cells promote peripheral nerve regeneration. Front Cell Dev Biol 2020;8:604946.

Li J, Zhang Y, Yang Z, Zhang J, Lin R, Luo D. Salidroside promotes sciatic nerve regeneration following combined application epimysium conduit and Schwann cells in rats. Exp Biol Med (Maywood) 2020;245:522-531.

Zhou J, Li S, Gao J, Hu Y, Chen S, Luo X, Zhang H, Luo Z, Huang J. Epothilone B facilitates peripheral nerve regeneration bypromoting autophagy and migration in Schwann cells. Front Cell Neurosci 2020;14:143.

Errante EL, Diaz A, Smartz T, Khan A, Silvera R, Brooks AE, Lee YS, Burks S S, Levi AD. Optimal technique for introducing Schwann cells into peripheral nerve repair sites. Front Cell Neurosci 2022;16:929494.

Yang H, Li Q, Li L, Chen S, Zhao Y, Hu Y, Wang L, Lan X, Zhong L, Lu D. Gastrodin modified polyurethane conduit promotes nerve repair via optimizing Schwann cells function. Bioact Mater 2022;8:355-367.

Sobue G, Yamamoto M, Doyu M, Li M, Yasuda T, Mitsuma T. Expression of mRNAs for neurotrophins (NGF, BDNF, and NT-3) and their receptors (p75NGFR, trk, trkB, and trkC) in human peripheral neuropathies. Neurochem Res 1998;23:821- 829.

Wang Y, Gu J, Wang J, Feng X, Tao Y, Jiang B, He J, Wang Q, Yang J, Zhang S, Cai J, Sun Y. BDNF and NT-3 expression by using glucocorticoid-induced bicistronic expression vector pGC-BDNF-IRES-NT3 protects apoptotic cells in a cellular injury model. Brain Res 2012;1448:137-143.

Gibbons A, Wreford N, Pankhurst J, Bailey K. Continuous supply of the neurotrophins BDNF and NT-3 improve chick motor neuron survival in vivo. Int J Dev Neurosci 2005;23:389-396.

Huang F, Wu Y, Wang H, Chang J, Ma G, Yin Z. Effect of controlled release of brainderived neurotrophic factor and neurotrophin-3 from collagen gel on neural stem cells. Neuroreport 2016;27:116-123.

Baron P, Shy M, Honda H, Sessa M, Kamholz J, Pleasure D. Developmental expression of P0 mRNA and P0 protein in the sciatic nerve and the spinal nerve roots of the rat. J Neurocytol 1994;23:249-257.

Faroni A, Smith R J, Procacci P, Castelnovo L F, Puccianti E, Reid A J, Magnaghi V, Verkhratsky A. Purinergic signaling mediated by P2X7 receptors controls myelination in sciatic nerves. J Neurosci Res 2014;92:1259-1269.

Forostyak O, Butenko O, Anderova M, Forostyak S, Sykova E, Verkhratsky A, Dayanithi G. Specific profiles of ion channels and ionotropic receptors define adipose and bone marrow derived stromal cells. Stem Cell Res 2016;16:622-634.

Kingham PJ, Kalbermatten DF, Mahay D, Armstrong SJ, Wiberg M, Terenghi G. Adipose-derived stem cells differentiate into a Schwann cell phenotype and promote neurite outgrowth in vitro. Exp Neurol 2007;207:267-274.
Publicado
2023-08-25
Cómo citar
Zeng, X., Liu, Y.- nan, Li, Z., He, Y., Li, F., Zhang, S.- yuan, Gu, J., & Lu, L. (2023). Induced differentiation of adipose-derived stem cells enhance secretion of neurotrophic factors.: La diferenciación inducida de las células madre derivadas del tejido adiposo aumenta la secreción de factores neurotróficos. Investigación Clínica, 64(3), 267-280. https://doi.org/10.54817/IC.v64n3a1
Sección
Trabajos Originales