Papel del virus del papiloma humano en el desarrollo del cáncer del cuello uterino.

Rol of the human papilloma virus in the development of cervical cancer.

Palabras clave: virus del papiloma humano, fisiopatología del virus del papiloma humano, infección por el virus del papiloma humano, taxonomía de los virus del papiloma, genoma de los virus del papiloma, carcinogénesis

Resumen

La presente revisión narrativa fue realizada con el objeto de investigar y recopilar información sobre la fisiopatología del Virus del Papiloma Humano (VPH) y los mecanismos virales para infectar a las células huéspedes, como sobrevive a los mecanismos inmunológicos innatos del huésped y los me canismos para producir infecciones benignas y malignas del cuello uterino. La revisión de la literatura fue realizada electrónicamente en PubMed, Medline, ISI, DOAJ, Springer, Embase. Web of Knowledge, DOAJ, y Google Scholar, Hinari, JAMA Network, Oxford Academic y Research Life para los artículos escritos en inglés. Scielo, Lantidex, Imbiomed-L, Redalyc y Google Scholar fue revisados en búsqueda de artículos escritos en español. La búsqueda incluyó las palabras claves (MESH): fisiopatología del VPH, ciclo de vida del VPH, carcinogénesis del VPH, estructura genómica del VPH, mecanismo de infección del VPH, bases genéticas de la carcinogénesis del VPH, infección del VPH, taxonomía del VPH. Se buscaron, revisaron y analizaron las publicaciones desde enero de 1985 a agosto de 2021. Esta revisión narrativa nos permite entender como el VPH ocasiona la infección productiva y no productiva en las células de los epitelios escamosos estratificados del ser humano, en especial el del cuello uterino, nos explica cómo la infección por el virus puede producir lesiones benignas y lesiones malignas, y nos explica porque se clasifican en VPH-AR y VPH-BR, según su capacidad oncogénica. Estos procesos han permitido entender el comportamiento del virus y establecer tratamiento primario para el cáncer del cuello uterino.

Descargas

La descarga de datos todavía no está disponible.

Biografía del autor/a

José Núñez-Troconis, Universidad del Zulia, Maracaibo, Venezuela.

Departamento de Obstetricia y Ginecología, Facultad de Medicina, Universidad del Zulia, Maracaibo, Venezuela.

Citas

Willemsen A, Bravo IG. Origin and evolution of papillomavirus (onco)genes and genomes Phil. Trans. R. Soc. B 2019 374: 20180303. http://doi.org/10.1098/rstb.2018.0303.

Schiffman M, Doorbar J, Wentzensen N, de Sanjosé S, Fakhry C, Monk BJ, Stanley MA, Franceschi S. Carcinogenic human papillomavirus infection. Nat Rev Dis Primers. 2016;2:16086. doi: 0.1038/nrdp.2016.86.

Van Doorslaer K, Bernard HU, Chen Z, de Villiers EM, zur Hausen H, Burk RD. Papillomaviruses: evolution, Linnaean taxonomy and current nomenclature. Trends Microbiol. 2011;19(2):49-50. doi: 10.1016/j.tim.2010.11.004.

Santos-López G, Márquez-Domínguez L, Reyes-Leyva J, Vallejo-Ruiz V. Aspectos generales de la estructura, la clasificación y la replicación del virus del papiloma humano. Rev Med Inst Mex Seguro Soc 2015;53(2): S166-S171. Disponible en: https://www.redalyc.org/articulo.oa?id=457744942008

Burk RD, Chen Z, Van Doorslaer K. Human papillomaviruses: genetic basis of carcinogenicity. Public Health Genomics. 2009;12(5- 6):281-290. doi: 10.1159/000214919.

Conway MJ, Meyers C. Replication and assembly of human papillomaviruses. J Dent Res. 2009;88(4):307-317. doi: 10.11 77/0022034509333446

Doorbar J, Quint W, Banks L, Bravo IG, Stoler M, Broker TR, Stanley MA. The biology and life-cycle of human papillomaviruses. Vaccine. 2012; 30 (Suppl 5):F55-70. doi: 10.1016/j.vaccine.2012.06.083.

Senba M, Mori N. Mechanisms of virus immune evasion lead to development from chronic inflammation to cancer formation associated with human papillomavirus infection. Oncol Rev. 2012; 6(2):e17. doi: 10.4081/oncol.2012.e17

Ochoa-Carrillo FJ. Virus del papiloma humano. Desde su descubrimiento hasta el desarrollo de una vacuna. Parte I/III. GAMO 2014;13:308-315. Disponible en: https://www.elsevier.es/es-revista-gaceta-mexicana-oncologia-305-articulo-virusdep

Taxonomy. ICTV. Disponible en: https://talk.ictvonline.org/taxonomy/. Revisado en marzo 14, 2023.

Papillomaviridae. Virus taxonomy. 2020 Release. ICTV 9th Report. Available at: https://talk.ictvonline.org/ictv-reports/ ictv_9th_report/dsdna-viruses2011/w/dsdna_viruses/121/papillomaviridae. Revisado en: marzo 14, 2023

Human reference clones. International Human Papillomavirus Reference Center. Swedish National HPV Reference Laboratory. Karolinska Institutet. Disponible en https://www.hpvcenter.se/human_reference_clones/. Revisado en marzo 14, 2023.

Burd EM. Human papillomavirus and cervical cancer. Clin Microbiol Rev. 2003;16(1):1- 17. doi: 10.1128/CMR.16.1.1-17.2003.

Núñez-Troconis, J. Epidemiología del virus del papiloma humano. Invest Clin 63(2): 170 - 184, 2022. https://doi.org/10.54817/ IC.v63n2a07.

Bosch FX, de Sanjosé S. The epidemiology of human papillomavirus infection and cervical cancer. Dis Markers. 2007; 23(4):213-27. doi: 10.1155/2007/914823.

Bruni L, Albero G, Serrano B, Mena M, Gómez D, Muñoz J, Bosch FX, de Sanjosé S. ICO/IARC information centre on HPV and cancer (HPV Information Centre). Human Papillomavirus and Related Diseases inthe World. Summary Report 17 June 2019 (updated 2019-07-27 08:33:24). Revisado en enero 15, 2022.

Brown AJ, Trimble CL. New technologies for cervical cancer screening. Best Pract Res Clin Obstet Gynaecol. 2012 Apr;26(2):233- 42. doi: 10.1016/j.bpobgyn.2011.11.001.

Mistry N, Wibom C, Evander M. Cutaneous and mucosal human papillomaviruses differ in net surface charge, potential impact on tropism. Virol J. 2008;5:118. doi: 10.1186/1743-422X-5-118.

Joyce JG, Tung JS, Przysiecki CT, Cook JC, Lehman ED, Sands JA, Jansen KU, Keller PM. The L1 major capsid protein of human papillomavirus type 11 recombinant virus-like particles interacts with heparin and cell-surface glycosamino- glycans on human keratinocytes. J Biol Chem 1999;274(9):5810-22. doi: 10.1074/jbc.274.9.5810.

Giroglou T, Florin L, Schäfer F, Streeck RE, Sapp M. Human papillomavirus infection requires cell surface heparan sulfate. J Virol. 2001;75(3):1565-70. doi: 10.1128/JVI.75.3.1565-1570.2001.

Rivera R, Delgado Jorge, Painel V, Barrero R, Larraín A. (2006). Mecanismo de infección y transformacion neoplásica producido por virus del papiloma humano en el epitelio cervical. Rev Chilena Obstet Ginecol 71(2), 135-140. https://dx.doi. org/10.4067/S0717-75262006000200011

Evander M, Frazer IH, Payne E, Qi YM, Hengst K, McMillan NA. Identification of the alpha6 integrin as a candidate receptor for papillomaviruses. J Virol 1997;71(3):2449-2456. doi: 10.1128/JVI.71.3.2449-2456.1997. PMID: 9032382.

McMillan NA, Payne E, Frazer IH, Evander M. Expression of the alpha6 integrin confers papillomavirus binding upon receptor-negative B-cells. Virology 1999;261(2):271- 279. doi: 10.1006/viro.1999.9825.

Selinka HC, Giroglou T, Sapp M. Analysis of the infectious entry pathway of human papillomavirus type 33 pseudovirions. Virology 2002;299(2):279-287. doi: 10.1006/viro.2001.1493.

Day PM, Lowy DR, Schiller JT. Papillomaviruses infect cells via a clathrindependent pathway. Virology 2003;307(1):1-11. doi: 10.1016/s0042-6822(02)00143-5.

Bousarghin L, Touzé A, Sizaret PY, Coursaget P. Human papillomavirus types 16, 31, and 58 use different endocytosis pathways to enter cells. J Virol 2003;77(6):3846-3850. doi: 10.1128/jvi.77.6.3846-3850.2003.

Kirchhausen T, Owen D, Harrison SC. Molecular structure, function, and dynamics of clathrin-mediated membrane traffic. Cold Spring Harb Perspect Biol 2014;6(5):a016725. doi: 10.1101/cshperspect.a016725.

Anderson RG. Caveolae: where incoming and outgoing messengers meet. Proc Natl Acad Sci USA 1993;90(23):10909-10913. doi: 10.1073/pnas.90.23.10909.

Merle E, Rose RC, LeRoux L, Moroianu J. Nuclear import of HPV11 L1 capsid protein is mediated by karyopherin alpha- 2beta1 heterodimers. J Cell Biochem 1999;74(4):628-637.

Nelson LM, Rose RC, Moroianu J. Nuclear import strategies of high risk HPV16 L1 major capsid protein. J Biol Chem 2002;277(26):23958-64. doi: 10.1074/jbc. M200724200.

Day PM, Baker CC, Lowy DR, Schiller JT. Establishment of papillomavirus infection is enhanced by promyelocytic leukemia protein (PML) expression. Proc Natl Acad Sci U SA. 2004;101(39):14252-14257. doi: 10.1073/pnas.0404229101.

Zhang P, Monteiro da Silva G, Deatherage C, Burd C, DiMaio D. Cell-penetrating peptide mediates intracellular membrane passage of Human Papillomavirus L2 Protein to trigger retrograde trafficking. Cell 2018 Sep 6;174(6):1465-1476.e13. doi:10.1016/j.cell.2018.07.031.

Doorbar J. Molecular biology of human papillomavirus infection and cervical cancer. Clin Sci (Lond) 2006;110(5):525-541. doi: 10.1042/CS20050369.

Schwartz S. Papillomavirus transcripts and posttranscriptional regulation. Virology 2013;445,187–196. https://doi.org/10.1016/j.virol.2013.04.034

Liu Z, Rashid T, Nyitray AG. Penises not required: a systematic review of the potential for human papillomavirus horizontal transmission that is non-sexual or does not include penile penetration. Sex Health 2016;13(1):10-21. doi: 10.1071/SH15089.

Sundström K, Ploner A, Arnheim-Dahls- tröm L, Eloranta S, Palmgren J, Adami HO, Ylitalo Helm N, Sparén P, Dillner Interactions Between High- and Low- Risk HPV Types Reduce the Risk of Squamous Cervical Cancer. J Natl Cancer Inst 2015;107(10):djv185. doi: 10.1093/jnci/ djv185.

Vaccarella S, Franceschi S, Herrero R, Schiffman M, Rodriguez AC, Hildesheim A, Burk RD, Plummer M. Clustering of multiple human papillomavirus infections in women from a population-based study in Guanacaste, Costa Rica. J Infect Dis 2011;204(3):385-390. doi: 10.1093/infdis/jir286.

Wentzensen N, Nason M, Schiffman M, Dodd L, Hunt WC, Wheeler CM. New Mexico HPV Pap Registry Steering Committee. No evidence for synergy between human papillomavirus genotypes for the risk of high- grade squamous intraepithelial lesions in a large population-based study. J Infect Dis 2014;209(6):855-864. doi: 10.1093/infdis/jit577.

de Araujo-Souza PS, Ramanakumar AV, Candeias JM, Thomann P, Trevisan A, Franco EL, Villa LL; Ludwig–McGill. Cohort Study. Determinants of baseline seroreactivity to human papillomavirus type 16 in the Ludwig-McGill cohort study. BMC Infect Dis 2014;14: 578. doi: 10.1186/ s12879-014-0578-0.

Bruni L, Diaz M, Castellsagué X, Ferrer E, Bosch FX, de Sanjosé S. Cervical human papillomavirus prevalence in 5 continents: meta-analysis of 1 million women with normal cytological findings. J Infect Dis 2010;202(12):1789-1799. doi: 10.1086/657321.

Rodríguez AC, Schiffman M, Herrero R, Wacholder S, Hildesheim A, Castle PE, Solomon D, Burk R. Proyecto Epidemiológico Guanacaste Group. Rapid clearance of human papillomavirus and implications for clinical focus on persistent infections. J Natl Cancer Inst 2008;100(7):513-517. doi: 10.1093/jnci/djn044.

Núñez-Troconis J, Delgado M, González J, Mindiola R, Velásquez J, Conde B, Whitby D, Munroe DJ. Prevalence and risk factors of human papillomavirus infection in asymptomatic women in a Venezuelan urban area. Invest Clin 2009;50(2):203-212.

Schiffman M 2, Castle PE, Jeronimo J, Rodriguez AC, Wacholder S. Human papillomavirus and cervical cancer. Lancet 2007;370 (9590):890-907. doi: 10.1016/ S0140-6736(07)61416-0.

Ronco G, Dillner J, Elfström KM, Tunesi S, Snijders PJ, Arbyn M, Kitchener H, Segnan N, Gilham C, Giorgi-Rossi P, Berkhof J, Peto J, Meijer CJ. International HPV screening working group. Efficacy of HPV- based screening for prevention of invasive cervical cancer: follow-up of four European randomised controlled trials. Lancet 2014; 383 (9916): 524-532. doi: 10.1016/S0140-6736(13)62218-7.

de Martel C, Shiels MS, Franceschi S, Simard EP, Vignat J, Hall HI, Engels EA, Plummer M. Cancers attributable to infections among adults with HIV in the United States. AIDS 2015 Oct 23;29(16):2173-81. doi: 10.1097/QAD.0000000000000808.

International Collaboration of Epidemiological Studies of Cervical Cancer, Apple by P, Beral V, Berrington de González A, Colin D, Franceschi S, Goodill A, Green J, Peto J, Plummer M, Sweetland S. Carcinoma of the cervix and tobacco smoking: collaborative reanalysis of individual data on 13,541 women with carcinoma of the cervix and 23,017 women without carcinoma of the cervix from 23 epidemiological studies. Int J Cancer 2006;118(6):1481- 1495. doi: 10.1002/ijc.21493.

International Collaboration of Epidemiological Studies of Cervical Cancer. Apple by P, Beral V, Berrington de González A, Colin D, Franceschi S, Goodhill A, Green J, Peto J, Plummer M, Sweetland S. Cervical carcinoma and reproductive factors: collaborative reanalysis of individual data on 16,563 women with cervical carcinoma and 33,542 women without cervical carcinoma from 25 epidemiological studies. Int J Cancer 2006;119(5):1108-1124. doi: 10.1002/ ijc.21953.

International Collaboration of Epidemiological Studies of Cervical Cancer, Appleby P, Beral V, Berrington de González A, Colin D, Franceschi S, Goodhill A, Green J, Peto J, Plummer M, Sweetland S. Cervical cancer and hormonal contraceptives: collaborative reanalysis of individual data for 16,573 women with cervical cancer and 35,509 women without cervical cancer from 24 epidemiological studies. Lancet 2007;370(9599):1609- 1621. doi: 10.1016/S0140-6736(07)61684-5.

Gargano JW, Nisenbaum R, Lee DR, Ruffin MT 4th, Steinau M, Horowitz IR, Flowers LC, Tadros TS, Birdsong G, Unger ER. Age-group differences in human papillomavirus types and cofactors for cervical intraepithelial neoplasia 3 among women referred to colposcopy. Cancer Epidemiol Biomarkers Prev 2012;21(1):111-21. doi: 10.1158/1055-9965.EPI-11-0664.

Pyeon D, Pearce SM, Lank SM, Ahlquist P, Lambert PF. Establishment of human papillomavirus infection requires cell cycle progression. PLoS Pathog 2009;5(2):e1000318. doi: 10.1371/journal.ppat.1000318.

Flores ER, Lambert PF. Evidence for a switch in the mode of human papillomavirus type 16 DNA replication during the viral life cycle. J Virol 1997;71(10):7167-7179. doi: 10.1128/JVI.71.10.7167-7179.1997.

Gilbert DM, Cohen SN. Bovine papilloma virus plasmids replicate randomly in mouse fibroblasts throughout S phase of the cell cycle. Cell 1987;50(1):59-68. doi: 10.1016/0092-8674(87)90662-3.

Hoffmann R, Hirt B, Bechtold V, Beard P, Raj K. Different modes of human papillomavirus DNA replication during maintenance. J Virol 2006;80(9):4431-4439. doi: 10.1128/JVI.80.9.4431-4439.2006.

Doorbar J. Latent papillomavirus infections and their regulation. Curr Opin Virol 2013;3(4):416-421. doi: 10.1016/j.coviro.2013.06.003.

Egawa N, Egawa K, Griffin H, Doorbar Human papillomaviruses; epithelial tropisms, and the development of neoplasia. Viruses 2015;7(7):3863-3890. doi: 10.339 0/v7072802.

Cladel NM, Hu J, Balogh K, Mejia A, Christensen ND. Wounding prior to challenge substantially improves infectivity of cottontail rabbit papillomavirus and allows for standardization of infection. J Virol Methods 2008;148(1-2):34-39. doi: 10.1016/j.jviromet.2007.10.005.

Valencia C, Bonilla-Delgado J, Oktaba K, Ocádiz-Delgado R, Gariglio P, Covarrubias L. Human papillomavirus E6/E7 oncogenes promote mouse ear regeneration by increasing the rate of wound re-epithelization and epidermal growth. J Invest Dermatol 2008;128(12):2894-2903. doi: 10.1038/jid.2008.156.

Doorbar J. The papillomavirus life cycle. J Clin Virol 2005;32 Suppl 1:S7-15. doi: 10.1016/j.jcv.2004.12.006.

Egawa N, Nakahara T, Ohno S, Narisawa- Saito M, Yugawa T, Fujita M, Yamato K, Natori Y, Kiyono T. The E1 protein of human papillomavirus type 16 is dispensable for maintenance replication of the viral genome. J Virol 2012;86(6):3276-3283. doi: 10.1128/JVI.06450-11.

Flores ER 2, Allen-Hoffmann BL, Lee D, Sattler CA, Lambert PF. Establishment of the human papillomavirus type 16 (HPV-16) life cycle in an immortalized human foreskin keratinocyte cell line. Virology 1999;262(2):344-354. doi: 10.1006/viro1999.9868.

Bernard HU. Regulatory elements in the viral genome. Virology 2013;445(1-2):197- 204. doi: 10.1016/j.virol.2013.04.035.

Zheng ZM, Baker CC. Papillomavirus genome structure, expression, and post- transcriptional regulation. Front Biosci 2006;11:2286-2302. doi: 10.2741/1971.

Bodily JM, Hennigan C, Wrobel GA, Rodriguez CM. Regulation of the human papillomavirus type 16 late promoter by E7 and the cell cycle. Virology 2013;443(1):11-19. doi: 10.1016/j.virol.2013.04.033.

Syrjänen SM, Syrjänen KJ. New concepts on the role of human papillomavirus in cell cycle regulation. Ann Med 1999;31(3):175- 187. doi: 10.3109/07853899909115976.

Thomas M, Pim D, Banks L. The role of the E6-p53 interaction in the molecular pathogenesis of HPV. Oncogene 1999;18(53):7690-7700. doi: 10.1038/sj.onc.1202953.

zur Hausen H. Papillomaviruses causing cancer: Evasion from host-cell control in early events in carcinogenesis. JNCI 2000; 92(9):690- 698. https://doi.org/10.1093/ jnci/92.9.690

Middleton K, Peh W, Southern S, Griffin H, Sotlar K, Nakahara T, El-Sherif A, Morris L, Seth R, Hibma M, Jenkins D, Lambert P, Coleman N, Doorbar J. Organization of human papillomavirus productive cycle during neoplastic progression provides a basis for selection of diagnostic markers. J Virol 2003;77(19):10186-10201. doi: 10.1128/ jvi.77.19.10186-10201.2003

Nakahara T, Nishimura A, Tanaka M, Ueno T, Ishimoto A, Sakai H. Modulation of the cell division cycle by human papillomavirus type 18 E4. J Virol 2002;76(21):10914-10920. doi: 10.1128/jvi.76.21.10914-10920.2002.

Gu Z, Matlashewski G. Effect of human papillomavirus type 16 oncogenes on MAP kinase activity. J Virol 1995;69(12):8051-8056. doi: 10.1128/JVI.69.12.8051-8056.1 995.

Conger KL, Liu JS, Kuo SR, Chow LT, Wang TS. Human papillomavirus DNA replication. Interactions between the viral E1 protein and two subunits of human dna polymerase alpha/primase. J Biol Chem 1999;274(5):2696-2705. doi: 10.1074/jbc.274.5.2696.

Masterson PJ, Stanley MA, Lewis AP, Romanos MA. A C-terminal helicase domain of the human papillomavirus E1 protein binds E2 and the DNA polymerase alpha-primase p68 subunit. J Virol 1998;72(9):7407-7419. doi: 10.1128/JVI.72.9.7407-7419.1998.

Penrose KJ, McBride AA. Proteasome-mediated degradation of the papillomavirus E2-TA protein is regulated by phosphorylation and can modulate viral genome copy number. J Virol 2000;74(13):6031-6038. doi: 10.1128/jvi.74.13.6031-6038.2000.

Desaintes C, Demeret C, Goyat S, Yaniv M, Thierry F. Expression of the papillomavirus E2 protein in HeLa cells leads to apoptosis. EMBO J 1997;16(3):504-514. doi: 10.1093/emboj/16.3.504.

Webster K, Parish J, Pandya M, Stern PL, Clarke AR, Gaston K. The human papillomavirus (HPV) 16 E2 protein induces apoptosis in the absence of other HPV proteins and via a p53-dependent pathway. J Biol Chem 2000;275(1):87-94. doi: 10.1074/ jbc.275.1.87.

Davy CE, Jackson DJ, Wang Q, Raj K, Masterson PJ, Fenner NF, Southern S, Cuthill S, Millar JB, Doorbar J. Identification of a G(2) arrest domain in the E1 wedge E4 protein of human papillomavi rus type 16. J Virol 2002;76(19):9806-9818. doi: 10.1128/ jvi.76.19.9806-9818.2002.

Raj K, Berguerand S, Southern S, Doorbar J, Beard P. E1 empty set E4 protein of human papillomavirus type 16 associates with mitochondria. J Virol 2004;78(13):7199-7207. doi: 10.1128/JVI.78.13.7199-7207. 2004.

Wang Q, Griffin H, Southern S, Jackson D, Martin A, McIntosh P, Davy C, Masterson PJ, Walker PA, Laskey P, Omary MB, Doorbar J. Functional analysis of the human papillomavirus type 16 E1=E4 protein provides a mechanism for in vivo and in vitro keratin filament reorganization. J Virol 2004;78(2):821-833. doi: 10.1128/ jvi.78.2.821-833.2004.

Yoshinouchi M, Hongo A, Nakamura K, Kodama J, Itoh S, Sakai H, Kudo T. Analysis by multiplex PCR of the physical status of human papillomavirus type 16 DNA in cervical cancers. J Clin Microbiol 1999;37(11):3514-3517. doi: 10.1128/JC M.37.11.3514-3517.1999

García-Tamayo J, Molina J, Blasco-Olaetxea. El virus del papiloma humano y el cáncer cervical: Una revisión de la historia actualizada sobre la investigación del cáncer del cuello uterino en Venezuela. Invest. Clín 2010;51(2):193-208. Disponible en: http://ve.scielo.org/scielo.php?script=sci_arttext&pid=S0535-51332010000200004&lng=es.

Scheffner M, Werness BA, Huibregtse JM, Levine AJ, Howley PM. The E6 onco- protein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. Cell 1990;63(6):1129-1136. doi: 10.1016/0092-8674(90)90409-8.

Scheffner M2, Huibregtse JM, Vierstra RD, Howley PM. The HPV-16 E6 and E6-AP complex functions as a ubiquitin-protein ligase in the ubiquitination of p53. Cell 1993;75(3):495-505. doi: 10.1016/0092-8674(93)90384-3.

Kessis TD, Slebos RJ, Nelson WG, Kastan MB, Plunkett BS, Han SM, Lorincz AT, Hedrick L, Cho KR. Human papillomavirus 16 E6 expression disrupts the p53-mediated cellular response to DNA damage. Proc Natl Acad Sci USA 1993;90(9):3988-3992. doi: 10.1073/pnas.90.9.3988.

Matlashewski G, Banks L, Pim D, Crawford L. Analysis of human p53 proteins and mRNA levels in normal and transformed cells. Eur J Biochem 1986;154(3):665-672. doi: 10.1111/j.1432-1033.1986.tb09449.x.

Veldman T, Horikawa I, Barrett JC, Schlegel R. Transcriptional activation of the telomerase hTERT gene by human papillomavirus type 16 E6 oncoprotein. J Virol 2001;75(9):4467-4472. doi: 10.1128/ JVI.75.9.4467-4472.2001.

Oda H, Kumar S, Howley PM. Regulation of the Src family tyrosine kinase Blk through E6AP-mediated ubiquitination. Proc Natl Acad Sci U S A 1999;96(17):9557-9562. doi: 10.1073/pnas.96.17.9557.

Kiyono T, Hiraiwa A, Fujita M, Hayashi Y, Akiyama T, Ishibashi M. Binding of high- risk human papillomavirus E6 oncoproteins to the human homologue of the Drosophila discs large tumor suppressor protein. Proc Natl Acad Sci USA 1997;94(21):11612- 11616. doi: 10.1073/pnas.94.21.11612.

Dyson N, Howley PM, Münger K, Harlow E. The human papilloma virus-16 E7 oncoprotein is able to bind to the retinoblastoma gene product. Science 1989;243(4893):934-937. doi: 10.1126/science.2537532.

Kiyono T, Foster SA, Koop JI, McDougall JK, Galloway DA, Klingelhutz AJ. Both Rb/p16INK4a inactivation and telomerase activity are required to immortalize human epithelial cells. Nature 1998;396(6706):84- 88. doi: 10.1038/23962.

Münger K, Phelps WC, Bubb V, Howley PM, Schlegel R. The E6 and E7 genes of the human papillomavirus type 16 together are necessary and sufficient for transformation of primary human keratinocytes. J Vi- rol 1989;63(10):4417-4421. doi: 10.1128/ JVI.63.10.4417-4421.

Halbert CL, Demers GW, Galloway DA. The E7 gene of human papillomavirus type 16 is sufficient for immortalization of human epithelial cells. J Virol 1991;65(1):473- 478. doi: 10.1128/JVI.65.1.473-478.1991.

Holowaty P, Miller AB, Rohan T, To T. Natural history of dysplasia of the uterine cervix. J Natl Cancer Inst 1999;91(3):252-258. doi: 10.1093/jnci/91.3.252.

Carrero YN, Callejas DE, Mosquera JA. In situ immunopathological events in human cervical intraepithelial neoplasia and cervical cancer: Review.Transl Oncol 2021 May;14(5):101058. doi: 10.1016/j.tranon. 2021.101058. Epub 2021 Mar 4.

Hemmat N, Bannazadeh Baghi H. Association of human papillomavirus infection and inflammation in cervical cancer. Pathog Dis 2019 Jul 1;77(5):ftz048. doi: 10.1093/fem- spd/ftz048.

Boccardo E, Lepique AP, Villa LL. The role of inflammation in HPV carcinogenesis. Carcinogenesis 2010 Nov; 31 (11): 1905-12. doi: 10.1093/carcin/bgq176. Epub 2010 Sep 5.

Torres-Poveda K, Bahena-Román M, Madrid-González C, Burguete-García AI, Bermúdez-Morales VH, Peralta-Zaragoza O, Madrid-Marina V. Role of IL -10 and TGF-β1 in local immunosuppression in HPV-asso- ciated cervical neoplasia. World J Clin On- col 2014 Oct 10;5(4):753-63. doi: 10.5306/wjco.v5.i4.753.

Singh N, Baby D, Rajguru JP, Patil PB, Thakkannavar SS, Pujari VB. Inflammation and cancer. Ann Afr Med 2019 Jul- Sep;18(3):121-126. doi: 10.4103/aam.aam_56_18.

Tindle RW. Immune evasion in human papillomavirus-associated cervical cancer. Nat Rev Cancer 2002 Jan;2(1):59-65. doi: 10.1038/nrc700.

Moscicki AB, Schiffman M, Kjaer S, Villa LL. Chapter 5: Updating the natural history of HPV and anogenital cancer. Vaccine 2006;24 Suppl 3:S3/42-51. doi: 10.1016/j.vaccine.2006.06.018.

Woodman CB, Collins S, Winter H, Bailey A, Ellis J, Prior P, Yates M, Rollason TP, Young LS. Natural history of cervical human papillomavirus infection in young women: a longitudinal cohort study. Lancet 2001;357(9271):1831-1836. doi: 10.1016/ S0140-6736(00)04956-4.

Rodriguez AC 2, Burk R, Herrero R, Hildesheim A, Bratti C, Sherman ME, Solomon D, Guillen D, Alfaro M, Viscidi R, Morales J, Hutchinson M, Wacholder S, Schiffman M. The natural history of human papillomavirus infection and cervical intraepithelial neoplasia among young women in the Guanacaste cohort shortly after initiation of sexual life. Sex Transm Dis 2007;34(7):494-502. doi: 10.1097/01. olq.0000251241.03088.a0

Woo YL, Sterling J, Damay I, Coleman N, Crawford R, van der Burg SH, Stanley M. Characterising the local immune responses in cervical intraepithelial neo- plasia: a cross-sectional and longitudinal analysis. BJOG 2008;115(13):1616-21; discussion 1621-1622. doi: 10.1111/j.1471- 0528.2008.01936.x.

van der Burg SH, de Jong A, Welters MJ, Offringa R, Melief CJ. The status of HPV16-specific T-cell reactivity in health and disease as a guide to HPV vaccine development. Virus Res 2002; 89(2):275-84. doi: 10.1016/s0168-1702(02)00196-x

Visser J, Nijman HW, Hoogenboom BN, Jager P, van Baarle D, Schuuring E, Abdulahad W, Miedema F, van der Zee AG, Daemen T. Frequencies and role of regulatory T cells in patients with (pre)malignant cervical neoplasia. Clin Exp Immunol 2007;150(2):199-209. doi: 10.1111/j.1365-2249.2007.03468.x

Moore RA, Nicholls PK, Santos EB, Gough GW, Stanley MA. Absence of canine oral papillomavirus DNA following prophylactic L1 particle-mediated immunotherapeutic delivery vaccination. J Gen Virol 2002;83(Pt 9):2299-2301. doi: 10.1099/0022-1317-83-9-2299.

Christensen ND, Cladel NM, Reed CA, Han R. Rabbit oral papillomavirus complete genome sequence and immunity following genital infection. Virology 2000;269(2):451- 461. doi: 10.1006/viro.2000.0237.

Nicholls PK, Moore PF, Anderson DM, Moore RA, Parry NR, Gough GW, Stanley MA. Regression of canine oral papillomas is associated with infiltration of CD4+ and CD8+ lymphocytes. Virology. 2001;283(1):31-39. doi: 10.1006/viro.2000.0789.

Knowles G, O’Neil BW, Campo MS. Phenotypical characterization of lymphocytes infiltrating regressing papillomas. J Virol 1996;70(12):8451-8458. doi: 10.1128/JVI.70.12.8451-8458.1996.

Maglennon GA, McIntosh P, Doorbar J. Persistence of viral DNA in the epithelial basal layer suggests a model for papillomavirus latency following immune regres- sion. Virology 2011;414(2):153-163. doi: 10.1016/j.virol.2011.03.019.

Maglennon GA, McIntosh PB, Doorbar J. Immunosuppression facilitates the reactivation of latent papillomavirus infections. J Virol 2014;88(1):71071-6. doi: 10.1128/ JVI.02589-13.

Zhang P, Nouri M, Brandsma JL, Iftner T, Steinberg BM. Induction of E6/E7 expression in cottontail rabbit papillomavirus latency following UV activation. Virology 1999;263(2):388-394. doi: 10.1006/ viro.1999.9950.
Publicado
2023-06-01
Cómo citar
Núñez-Troconis, J. (2023). Papel del virus del papiloma humano en el desarrollo del cáncer del cuello uterino.: Rol of the human papilloma virus in the development of cervical cancer. Investigación Clínica, 64(2), 233-254. https://doi.org/10.54817/IC.v64n2a09