β-defensinas como posibles indicadores de la actividad inflamatoria en la enfermedad periodontal.

β-defensins as possible indicators of inflammatory activity in periodontal disease.

  • Saira K. Ramírez Thomé Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, México
  • Beatriz X. Ávila Curiel Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, México.
  • María T. Hernández Huerta Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, México.
  • Carlos J. Solórzano Mata Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, México.
Palabras clave: β-defensinas, epitelio bucal, enfermedad periodontal, gingivitis, periodontitis, gingivitis experimental

Resumen

La enfermedad periodontal (gingivitis y periodontitis) es un proceso inflamatorio ocasionado por la actividad de bacterias patógenas y sus productos sobre el surco gingival, con la consecuente activación de la respuesta inmunitaria. La saliva y el fluido crevicular contienen una gran variedad de enzimas y factores antimicrobianos que están en contacto con la región supragingival y subgingival; entre ellos, las β-defensinas (hBDs). Las hBDs son péptidos catiónicos no glicosilados ricos en cisteína, producidos por las células epiteliales; tienen efecto antimicrobiano e inmunorregulador; de esta forma, contribuyen al mantenimiento de la homeostasis en los tejidos periodontales. Los cambios en la microbiota y en la respuesta inmunitaria de un periodonto sano a gingivitis y, finalmente, a periodontitis, es compleja. Su severidad de pende de un equilibrio dinámico entre las bacterias asociadas a la placa, factores genéticos y ambientales. Los avances recientes han permitido comprender la implicación de las hBDs en la detección, el diagnóstico y la terapéutica de la enfermedad periodontal, así como la relación que hay entre la periodontitis y otras enfermedades inflamatorias. El objetivo de esta revisión es describir el efecto de las hBDs en la respuesta inmunitaria y su utilización como marcadores de la actividad inflamatoria de la enfermedad periodontal.

Descargas

La descarga de datos todavía no está disponible.

Biografía del autor/a

Saira K. Ramírez Thomé, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, México

Facultad de Odontología. Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, México

Beatriz X. Ávila Curiel, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, México.

Facultad de Odontología, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, México.

María T. Hernández Huerta, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, México.

Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, México.

Carlos J. Solórzano Mata, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, México.

Facultad de Odontología, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, México.

Citas

Kinane DF, Stathopoulou PG, Papapanou PN. Periodontal diseases. Nat Rev Dis Primers 2017; 22;3:17038.

Trombelli L, Farina R, Silva CO, Tatakis DN. Plaque-induced gingivitis: Case definition and diagnostic considerations. J Clin Periodontol 2018; 45:44–67.

Papapanou PN, Sanz M, Buduneli N, Dietrich T, Feres M, Fine DH. Flemmig T, García R, Giannobile, Graziani F, Greenwell H, Herrera D, Richard T, Kebscull M, Kinane D, Kirkwood K, Loos B, Machtei E, Meng H, Mombelli A, Needleman I, Offenbacher, Seymur G, Teles R, Tonetti M. Periodontitis: Consensus report of workgroup 2 of the 2017 world workshop on the classification of periodontal and peri-Implant diseases and conditions. J Clin Periodontol 2018; 89(Suppl 1):173–182.

Oppermann RV, Haas AN, Rösing CK, Susin C. Epidemiology of periodontal diseases in adults from Latin America. Periodontol 2000, 2015; 67:13–33.

Eke PI, Dye BA, Wei L, Thornton-Evans GO, Genco RJ. Prevalence of periodontitis in adults in the United States: 2009 and 2010. J Dent Res 2012; 91:914–920.

Eke PI, Borgnakke WS, Genco RJ. Recent epidemiologic trends in periodontitis in the USA. Periodontol 2000 2020; 82:257–267.

Feller L, Altini M, Khammissa RAG, Chandran R, Bouckaert M, Lemmer J. Oral mucosal immunity. Oral Surg Oral Med Oral Pathol Oral Radiol 2013; 116:576-583.

Gursoy KU, Könönen E. Understanding the roles of gingival beta-defensins. J Oral Microbiol 2012; 4:1-10.

Niyonsaba F, Kiatsurayanon, Chieosilapatham P, Ogawa H. Friends or foes? host defense (antimicrobial) peptides and proteins in human skin diseases. Exp Dermatol 2017;26: 989–998.

Chang AM, Kantrong N, Darveau RP. Maintaining homeostatic control of periodontal epithelial tissue. Periodontol 2000 2021; 86:188–200.

Dommisch H, Açil Y, Dunsche A, Winter J, Jepsen S. Differential gene expression of human β-defensins (hBD-1, -2, -3) in inflammatory gingival diseases. Oral Microbiol Immunol 2005; 20:186–190.

Zharkova MS, Orlov DS, Golubeva OY, Chakchir OB, Eliseev IE, Grinchuk TM, Shamova OV. Application of antimicrobial peptides of the innate immune system in combination with conventional antibiotics-A novel way to combat antibiotic resistance? Front Cell Infect Microbiol 2019; 30;9:128.

García J-RC, Krause A, Schulz S, Rodríguez-Jiménez F-J, Klüver E, Adermann K. Human β‐defensin 4: a novel inducible peptide with a specific salt‐sensitive spectrum of antimicrobial activity. The Faseb J 2001;15:1819–1821.

Kaiser V, Diamond G. Expression of mammalian defensin genes. J Leukoc Biol 2000;68:779-784.

Meade KG, O’Farrelly C. β-Defensins: Farming the microbiome for homeostasis and health. Front. Immunol 2019; 9:3072.

Diamond G, Zasloff M, Eck H, Brasseur M, Maloy WL, Bevins CL. Tracheal antimicrobial peptide, a novel cysteine-rich peptide from mammalian tracheal mucosa: peptide isolation and cloning of a cDNA. Proc Natl Acad Sci 1991; 88: 3952–3956.

Jones DE, Bevins CL. Paneth cells of the human small intestine express an antimicrobial peptide gene. J Biol Chem 1992; 267:23216–23225.

Skeate JG, Segerink WH, Garcia MD, Fernandez DJ, Prins R, Lühen KP, Voss FO, Da Silva DM and Kast WM. Theta-defensins inhibit high-risk human Papillomavirus infection through charge-driven capsid clustering. Front Immunol 2020; 11:561843.

Xu D, Lu W. Defensins: A double-edged sword in host immunity. Front. Immunol 2020; 11:764.

Büyükkiraz E, Kesmen M. Antimicrobial peptides (AMPs): a promising class of antimicrobial compounds. J Appl Microbiol 2021; 132:1–24.

Enigk K, Jentsch H, Rodloff A C, Eschrich K, Stingu CS. Activity of five antimicrobial peptides against periodontal as well as non-periodontal pathogenic strains. J Oral Microbiol 2020; 12:1829405.

Mangoni ML, McDermott AM & Zasloff M. Antimicrobial peptides and wound healing: biological and therapeutic considerations. Exp Dermatol 2016; 25: 167–173.

Jarczak J, Kościuczuk EM, Lisowski P, Strzałkowska N, Jóźwik A, Horbańczuk J. Defensins: Natural component of human innate immunity. Hum Immunol 2013; 74:1069–1079.

Ekuni D, Firth JD, Putnins EE. Studies on periodondal disease. 1st Ed.3 Human Press:Springer(NY) 2014; p.53-75.

Risso A. Leukocyte antimicrobial peptides: multifunctional effector molecules of innate immunity. J Leukocyte Biol 2000; 68:785–792.

Lamont R, Diamond G, Maron JL, Güncü GN, Yilmaz D, Könönen E. Salivary antimicrobial peptides in early detection of periodontitis. Front Cell Infect Microbiol 2015; 5:99.

Niyonsaba F, Nagaoka I, Ogawa H. Human defensins and cathelicidins in the skin: be- yond direct antimicrobial properties. Crit Rev Immunol 2006; 26:545-576.

García JRC, Jaumann F, Schulz S, Krause A, Rodríguez-Jiménez J, Forssmann U. Identification of a novel, multifunctional β-defensin (human β-defensin 3) with specific antimicrobial activity: Its interaction with plasma membranes of Xenopus oocytes and the induction of macrophage chemoattraction. Cell and Tissue Research 2001; 306:257–264.

Boman HG. Peptide antibiotics and their role in innate immunity. Annu Rev immunol 1995; 13:61-92.

Abiko Y, Saitoh M. Salivary defensins and their importance in oral health and disease. Current Pharmaceutical Design 2007; 13:3065–3072.

Goebel C, Mackay LG, Vickers ER, Mather LE. Determination of defensin HNP-1, HNP- 2, and HNP-3 in human saliva by using LC/ MS. Peptides. 2000; 21:757-765.

Mizukawa N, Sugiyama K, Ueno T, Mishima K, Takagi S, Sugahara T. Levels of human defensin-1, an antimicrobial peptide, in saliva of patients with oral inflammation. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 1999;87:539-543.

Niyonsaba F, Nagaoka I, Ogawa H & Okumura K. Multifunctional antimicrobial pro- teins and peptides: natural activators of immune systems. Curr Pharm Des 2009; 15:2393–2413.

Zasloff M. Antimicrobial peptides of multicellular organisms. Nature 2002; 415:389–395.

Singh PK, Jia HP, Wiles K, Hesselberth J, Liu L, Conway B. Production of β-defensins by human airway epithelia. Proc Natl Acad Sci USA 1998; 95:14961–14966.

Shafer W.M. Antimicrobial peptides and human disease. 1st Ed. Springer-Verlag Berlín Heidelberg (USA);2006, p.1-25.

Harder J, Bartels J, Christophers E, Schröder JM. Isolation and characterization of human β-defensin-3, a novel human inducible peptide antibiotic. J Biol Chem 2001; 276:5707–5713.

Schneider JJ, Unholzer A, Schaller M, Schafer-Korting M, Korting HC. Human defensins. J Mol Med (Berl). 2005; 83:587–595.

Li X, Duan D, Wang P, Han B, Xu Y. New finding of the expression of human beta defensin-4 in healthy gingiva. Hua Xi Kou Qiang Yi Xue Za Zhi 2013; 31:165-168.

Braff MH, Gallo RL. Antimicrobial peptides: An essential component of the skin defensive barrier. Vol. 306, Curr Top Microbiol Immunol 2006; 306:91–110.

Li X, Duan D, Yang J, Wang P, Han B, Zhao L, Jepsen S, Dommisch H, Winter J & Xu Y. The expression of human β-defensins (hBD-1, hBD-2, hBD-3, hBD-4) in gingival epithelia. Arch Oral Biol 2016; 66:15–21.

Abiko Y, Saitoh M, Nishimura M, Yamazaki M, Sawamura D & Kaku T. Role of beta defensins in oral epithelial health and di- sease. Med Mol Morphol 2007; 40:179–184.

Dommisch H, Skora P, Hirschfeld J, Olk G, Hildebrandt L, Jepsen S. The guardians of the periodontium—sequential and differential expression of antimicrobial peptides during gingival inflammation. Results from in vivo and in vitro studies. J Clin Periodontol 2019; 46:276–285.

Diamond G, Ryan L. Beta-defensins: what are they really doing in the oral cavity? Oral Dis. 2011; 17:628-635.

Marshall RI. Gingival defensins: Linking the innate and adaptive immune responses to dental plaque. Periodontol 2000 2004; 35:14–20.

Abiko Y, Nishimura M, Kusano K, Kaku T. Presence of human beta-defensin 2 peptide in keratinization in salivary gland tumor. Oral Med Patol 2000; 5:95-97.

Tanida T, Okamoto T, Okamoto A, Wang H, Hamada T, Ueta E. Decreased excretion of antimicrobial proteins and peptides in saliva of patients with oral candidiasis. J Oral Pathol Med 2003; 32:586–594.

Gursoy UK, Könönen E. Understanding the roles of gingival beta-defensins. J Oral Microbiol 2012;4:10.

Lamkin MS, Oppenheim FG. Structural features of salivary function. Crit Rev Oral Biol Med 1993; 4:251-259.

Schenkels LM, Veerman ECI, Nieuw A. Biochemical composition of human saliva in relation to other mucosal fluids. Crit Rev Oral Biol Med 1995; 6:161-175.

Arellanes C, Toledo M, Jiménez V, Ávila B, Flores AL, Torres Anayetzin, Solórzano C. Niveles de β-defensina 2 en saliva total en escolares de 6 a 12 años de edad con y sin obesidad y su relación con lesiones cariosas. Esteban López Ed. Oaxaca; Ciencias joven. Anuario del 3º Encuentro de Jóvenes Investigadores del Estado de Oaxaca, México: COCYT; 2016. P 39-41.

Arellanes C, Toledo M, Jiménez V, Ávila B, Flores AL, Torres Anayetzin, Solórzano C. Beta-defesin-2, obesity and caries in children of 6 to 12 years. Int J Mol Med 2017;40:S60.

Koo HB, Seo J. Antimicrobial peptides under clinical investigation. Pept Sci 2019; 111:e24122. Koprivnjak T, Peschel A. Bacterial resistance mechanisms against host defense peptides. Cell Mol Life Sci 2011; 68:2243- 2254.

Lee TH, Hall KN, Aguilar MI. Antimicrobial peptide structure and mechanism of action: a focus on the role of membrane structure. Curr Top Med Chem 2016; 16:25–39.

Kumar P, Kizhakkedathu JN, Straus SK. Antimicrobial peptides: diversity, mechanism of action and strategies to improve the activity and biocompatibility in vivo. Biomolecules 2018; 8:4.

Hancock RE, Patrzykat A. Clinical development of cationic antimicrobial peptides: from natural to novel antibiotics. Curr Drug Targets Infect Disord 2002; 2:79–83.

Hale JD, Hancock RE. Alternative mechanisms of action of cationic antimicrobial peptides on bacteria. Expert Rev Anti Infect Ther. 2007; 5:951–959.

Teixeira V, Feio MJ, Bastos M. Role of lipids in the interaction of antimicrobial peptides with membranes. Prog Lipid Res. 2012; 51:149-177.

Le CF, Fang CM, Sekaran SD. Intracellular targeting mechanisms by antimicrobial peptides. antimicrob agents chemother. 2017; 61:e02340-16.

Pfalzgraff A, Brandenburg K, Weindl G. Antimicrobial peptides and their therapeutic potential for bacterial skin infections and wounds. Front Pharmacol. 2018; 9:281.

Hancock RE, Sahl HG. Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat Biotechnol 2006; 24:1551-1557.

Chapple ILC, Mealey BL, van Dyke TE, Bartold PM, Dommisch H, Eickholz P, Geisinger M, Genco R, Glogauer M, Goldstein M, Griffin T, Holmstrup P, Johnson G, Kapila Y, Lang N, Meyle J, Murakami S, Plemons J, Romito G, Shapira L, Tatakis D, Teughels W, Trombelli L, Walter C, Wimmer G, Xenoudi P, Yoshie H. Periodontal health and gingival diseases and conditions on an intact and a reduced periodontium: Consensus report of workgroup 1 of the 2017 world workshop on the classification of periodontal and peri-Implant diseases and conditions. J Clin Periodontol 2018: 45:S68–S77.

Weyrich LS. The evolutionary history of the human oral microbiota and its implications for modern health. Periodontol 2000. 2021; 85:90–100.

Gorr SU, Abdolhosseini M. Antimicrobial peptides and periodontal disease. J Clin Periodontol 2011; 38:126–141.

Öztürk A, Kurt-Bayrakdar S, Avci B. Comparison of gingival crevicular fluid and serum human beta-defensin-2 levels bet- ween periodontal health and disease. Oral Dis 2021; 27:993–1000.

Li J, Fernández-Millán P, Boix E. Syner-gism between host defence peptides and antibiotics against bacterial infections. Curr Top Med Chem 2020; 20:1238-1263.

Prasad SV, Fiedoruk K, Daniluk T, Piktel E, Bucki R. Molecular sciences expression and function of host defense peptides at inflammation sites. Int. J. Mol. Sci 2020; 21:104.

Niyonsaba F, Ushio H, Nakano N, Ng W, Sayama K, Hashimoto K. Antimicrobial peptides human β-defensins stimulate epidermal keratinocyte migration, proliferation and production of proinflammatory cytokines and chemokines. J Invest Dermatol 2007; 127:594–604.

Lewies A, Du Plessis LH, Wentzel JF. Antimicrobial peptides: the achilles’ heel of antibiotic resistance? probiotics antimicrob Proteins 2019; 11:370-381.

Magrone T, Russo MA, Jirillo E. Antimicrobial peptides: phylogenic sources and biological activities. First of two parts. Curr Pharm des 2018; 24:1043–1053.

Hertz CJ, Wu Q, Porter EM, Zhang YJ, Weismüller KH, Godowski PJ, Ganz T, Randell SH, Modlin RL. Activation of Tolllike receptor 2 on human tracheobronchial epithelial cells induces the antimicrobial peptide human beta defensin-2. J Immunol 2003; 171:6820–6826.

Vora P, Youdi A, Thomas LS, Fukata M, Tesfay SY, Lukasek K, Michelsen K S, Wada A, Hirayama T, Arditi M, Abreu MT. Beta-defensin-2 expression is regulated by TLR signaling in intestinal epithelial cells. J. Immunol 2004; 173:5398–5405.

Semple F, Dorin JR. B-Defensins: multifunctional modulators of infection, inflammation and more? J Innate Immun 2012; 4:337–348.

Krisanaprakornkit S, Kimball JR, Weinberg A, Darveau RP, Bainbridge BW, Dale BA. Inducible expression of humandefensin 2 by Fusobacterium nucleatum in oral epithelial cells: Multiple signaling pathways and role of commensal bacteria in innate immunity and the epithelial barrier. Infect immun 2000; 68: 2907–2915.

Haney EF, Mansour SC, Hancock RE. Antimicrobial peptides: An introduction. Methods Mol Biol 2017; 1548:3-22.

Cederlund A, Gudmundsson GH, Agerberth B. Antimicrobial peptides important in innate immunity. FEBS J 2011; 278:3942-3951.

Ganz T. Defensins: antimicrobial peptides of innate immunity. Nat Rev Immunol. 2003; 3:710-720.

Suarez-Carmona M, Hubert P, Delvenne P, Herfs M. Defensins: “simple” antimicrobial peptides or broad-spectrum molecules? Cytokine Growth Factor Rev 2015; 26:361- 370.

Vardar-Sengul S, Demirci T, Sen BH, Erkizan V, Kurulgan E, Baylas H. Human beta defensin-1 and -2 expression in the gingiva of patients with specific periodontal diseases. J Periodontal Res 2007; 42:429-437.

Ebrahem MA. Expression of human beta defensins (HBDs) 1, 2 and 3 in gingival crevicular fluid of patients affected by localized aggressive periodontitis. Saudi Dental Journal 2013; 25:75–82.

Yong X, Chen Y, Tao R, Zeng Q, Liu Z, Jiang L, Ye L, Lin X. Periodontopathogens and human β-defensin-2 expression in gin-gival crevicular fluid from patients with periodontal disease in Guangxi, China. J Periodontal Res 2015; 50:403–410.

Brancatisano FL, Maisetta G, Barsotti F, Esin S, Miceli M, Gabriele M. Reduced human beta defensin 3 in individuals with periodontal disease. J Dent Res 2011; 90:241–245.

Costa LCM, Soldati KR, Fonseca DC, Costa JE, Abreu MHNG, Costa FO. Gingival crevicular fluid levels of human beta-defensin 1 in individuals with and without chronic periodontitis. J Periodontal Res 2018; 53:736–742.

Pereira A, Costa L, Soldati K, Guimarães de Abreu M, Costa F, Zandim-Barcelos D. Gingival Crevicular fluid levels of human beta-defensin 2 and 3 in healthy and diseased sites of individuals with and without periodontitis. J Int Acad Periodontol 2020; 22:90–99.

Sidharthan S, Dharmarajan G, Kulloli Gingival crevicular fluid levels of inter- leukin-22 (IL -22) and human β defensin-2 (hBD-2) in periodontal health and disease: A correlative study. J Oral Biol Craniofacial Res 2020; 10:498–503.

Maisetta G, Brancatisano FL, Esin S, Campa M, Batoni G. Gingipains produced by Porphyromonas gingivalis ATCC49417 degrade human-β-defensin 3 and affect peptide’s antibacterial activity in vitro. Peptides 2011; 32:1073–1077.

Taggart CC, Greene CM, Smith SG, Levine RL, McCray PB, O’Neill S. Inactivation of human β-defensins 2 and 3 by Elastolytic Cathepsins. J Immunol 2003; 171:931–937.

Pingel LC, Kohlgraf KG, Hansen CJ, Eastman CG, Dietrich DE, Burnell KK, Srikantha RN, Xiao X, Be langer M, Progulske-Fox A, Cavanaugh JE, Guthmiller JM, Johnson GK, Joly S, Kurago ZB, Dawson DV, Brogden KA. Human betadefensin 3 binds to hemagglutinin B (rHagB), a non-fimbri- al adhesin from Porphyromonas gingivalis, and attenua- tes a pro-inflammatory cytokine respon- se. Immunol Cell Biol 2008; 86:643–649.

Yin L, Chino T, Horst OV, Hacker BM, Clark EA, Dale BA, Chung WO. Differential and coordinated expression of defensins and cytokines by gingival epithelial cells and dendritic cells in response to oral bacteria. BMC Immunol 2010; 11:37.

Cutler CW, Teng YT. Oral mucosal dendritic cells and periodontitis: many sides of the same coin with new twists. Periodontol 2000 2007; 45:35-50.

Zhou L, Spolski R, Min R, Shenderov K, Egawa T, Levy DE, Leonard WJ, Littman DR. IL -6 programs T(H)-17 cell differentiation by promoting sequential engagement of the IL -21 and IL -23 pathways. Nat Immunol 2007; 8:967-974.

Goulvestre C, Batteux F, Charreire J. Chemokines modulate experimental autoimmune thyroiditis through attraction of autoreactive or regulatory T cells. Eur J Immunol 2002; 32:3435-3442.

Funderburg N, Lederman MM, Feng Z, Drage MG, Jadlowsky J, Harding CV, Weinberg A, Sieg SF. Human-defensin-3 activates professional antigen-presenting cells via Toll-like receptors 1 and 2. Proc Natl Acad Sci USA 2007; 104:18631-18635.

Loe H, Theilade E, Jensen Sb. Experimental gingivitis in man. J Periodontol 1965; 36:177-187.

Yamamoto M, Aizawa R. Maintaining a protective state for human periodontal tissue. Periodontol 2000 2021; 86:142-156.

Salvi GE, Franco LM, Braun TM, Lee A, Rutger Persson G, Lang NP, Giannobile WV. Pro-inflammatory biomarkers during experimental gingivitis in patients with type 1 diabetes mellitus: a proof-of-con- cept study. J Clin Periodontol 2010; 37:9- 16.

Offenbacher S, Barros SP, Paquette DW, Winston JL, Biesbrock AR, Thomason RG, Gibb RD, Fulmer AW, Tiesman JP, Juhlin KD, Wang SL. Reichling TD, Chen KS, Ho B. Gingival transcriptome patterns during induction and resolution of experimental gingivitis in humans. J Periodontol 2009; 80:1963-1982.

Ramirez T, Díaz C, Franco A, Jimenez C, Vargas C, Solorzano M. Expression of beta- desfensins 1 and 2 in total saliva in individuals with a 35-day experimental gingivitis model. Int J Mol Med 2019; 44:45.

Dommisch H, Staufenbiel I, Schulze K, Stiesch M, Winkel A, Fimmers R. Expression of antimicrobial peptides and interleukin-8 during early stages of inflammation: An experimental gingivitis study. J Periodontal Res 2015; 50:836–845.

Vankeerberghen A, Nuytten H, Dierickx K, Quirynen M, Cassiman JJ, Cuppens H. Differential induction of human beta- defensin expression by periodontal commensals and pathogens in periodontal pocket epithelial cells. J Periodontol 2005; 76:1293–1303.

Raina M, Bates AM, Fischer CL, Progulske-Fox A, Abbasi T, Vali S, Brogden KA. Human beta defensin 3 alters matrix metalloproteinase production in human dendritic cells exposed to Porphyromonas gingivalis hemagglutinin B. J Periodontol 2018; 89:361-369.
Publicado
2022-11-10
Cómo citar
Ramírez Thomé, S. K., Ávila Curiel, B. X., Hernández Huerta, M. T., & Solórzano Mata, C. J. (2022). β-defensinas como posibles indicadores de la actividad inflamatoria en la enfermedad periodontal.: β-defensins as possible indicators of inflammatory activity in periodontal disease. Investigación Clínica, 63(4), 414-434. https://doi.org/10.54817/IC.v63n4a08