Effect of tetrahydroquinoline derivatives on the intracellular Ca2+ homeostasis in breast cancer cells (MCF-7) and its relationship with apoptosis.
Efecto de derivados de tetrahidroquinolinas sobre la homeostasis del Ca2+ intracelular en células de cáncer de mama (MCF-7) y su relación con la apoptosis.
Resumen
Los derivados de tetrahidroquinolina son estructuras interesantes que exhiben una amplia gama de actividades biológicas, incluyendo efectos antitumorales. Se determinó el efecto de las tetrahidroquinolinas sintetizadas JS-56 y JS-92 sobre la apoptosis, concentración intracelular de Ca2+ ([Ca2+]i) y la actividad Ca2+-ATPasa del retículo sarco(endo)plásmico (SERCA) en células de cáncer de mama MCF-7. Se usaron ensayos colorimétricos para evaluar la viabilidad de las células MCF-7 y la actividad SERCA. Se emplearon Fura-2 y rodamina 123 para medir la concentración de Ca2+ intracelular y el potencial electroquímico mitocondrial, respectivamente. El ensayo TUNEL se utilizó para analizar la fragmentación del ADN, mientras que la actividad de caspasas y la expresión génica dependiente de NF-κB se evaluaron mediante luminiscencia. Modelos in silico permitieron el análisis del acoplamiento molecular. Estos compuestos aumentan la concentración de Ca2+ intracelular; la principal contribución es la entrada de Ca2+ desde el medio extracelular. Tanto JS-56 como JS-92 inhiben la actividad de SERCA y disipan el potencial electroquímico mitocondrial a través de procesos dependientes e independientes de la captación de Ca2+ por este orgánulo. Además, JS-56 y JS-92 generan citotoxicidad en células MCF-7. El efecto de JS-92 es mayor que JS-56. Ambos compuestos activan las caspasas 7 y 9, provocan la fragmentación del ADN y potencian el efecto del 12-miristato-13-acetato de forbol en la expresión génica dependiente de NF-κB. El análisis de acoplamiento molecular sugiere que ambos compuestos tienen una alta interacción con SERCA, similar a la tapsigargina. Ambos derivados de tetrahidroquinolina indujeron la muerte celular a través de una combinación de eventos apoptóticos, aumento de [Ca2+]i e inhibición de la actividad SERCA por interacción directa.
Descargas
Citas
Peart O. Breast intervention and breast cancer treatment options. Radiol Technol 2015;86:535M-558M; quiz 559–62.
Sergeev IN, Li S, Colby J, Ho C-T, Dushenkov S. Polymethoxylated flavones induce Ca2+-mediated apoptosis in breast cancer cells. Life Sci 2006;80:245–253.
Sareen D, Darjatmoko SR, Albert DM, Polans AS. Mitochondria, calcium, and calpain are key mediators of Resveratrol-induced apoptosis in breast cancer. Mol Pharmacol 2007;72:1466–1475.
Lee J-H, Li Y-C, Ip S-W, Hsu S-C, Chang N-W, Tang N-Y, Yu C-S, Chou S-T, Lin S-S, Lino C-C, Yang J-S, Chung J-G. The role of Ca2+ in baicalein-induced apopto- sis in human breast MDA-MB-231 cancer cells through mitochondria- and caspa- se-3-dependent pathway. Anticancer Res 2008;28:1701–1711.
Pimentel AA, Felibertt P, Sojo F, Colman L, Mayora A, Silva ML, Rojas H, Dipolo R, Suarez AI, Compagnone RS, Arvelo F, Galindo-Castro I, De Sanctis JB, Chirino P, Benaim G. The marine sponge toxin agelasine B increases the intracellular Ca2+ concentration and induces apoptosis in human breast cancer cells (MCF-7). Cancer Chemother Pharmacol 2012;69:71–83.
Zhang Z, Teruya K, Eto H, Shirahata S. Induction of apoptosis by low molecular-weight fucoidan through calcium and caspase-dependent mitochondrial pathways in MDA-MB-231 breast cancer cells. Biosci Biotechnol Biochem 2013;77:235–242.
Al-Taweel N, Varghese E, Florea A-M, Büsselberg D. Cisplatin (CDDP) triggers cell death of MCF-7 cells following disruption of intracellular calcium ([Ca2+]i) homeostasis. J Toxicol Sci 2014;39:765–774.
Sehgal P, Szalai P, Olesen C, Praetorius HA, Nissen P, Christensen SB, Engedal N, Møller J V. Inhibition of the sarco/endoplasmic reticulum (ER) Ca2+-ATPase by thapsigargin analogs induces cell death via ER Ca2+ depletion and the unfolded protein response. J Biol Chem 2017;292:19656– 19673.
Carafoli E. Calcium signaling: A tale for all seasons. Proc Natl Acad Sci 2002;99:1115– 1122.
Carafoli E. Intracellular calcium homeostasis. Annu Rev Biochem 1987;56:395–433.
Breckenridge DG, Germain M, Mathai JP, Nguyen M, Shore GC. Regulation of apoptosis by endoplasmic reticulum pathways. Oncogene 2003;22:8608–8618.
Szegezdi E, Logue SE, Gorman AM, Samali A. Mediators of endoplasmic reticulum stress‐induced apoptosis. EMBO Rep 2006;7:880–885.
Rizzuto R, Bernardi P, Pozzan T. Mitochondria as all‐round players of the calcium game. J Physiol 2000;529:37–47.
Hengartner MO. The biochemistry of apoptosis. Nature 2000;407:770–776.
Kouznetsov V V, Bello Forero JS, Amado Torres DF. A simple entry to novel spiro dihydroquinoline-oxindoles using Povarov reaction between 3-N-aryliminoisatins and isoeugenol. Tetrahedron Lett 2008; doi: 10.1016/j.tetlet.2008.07.096.
Kouznetsov V, R. Merchan Arenas D, Arvelo F, S. Bello Forero J, Sojo F, Munoz 4-Hydroxy-3-methoxyphenyl substituted 3-methyl-tetrahydroquinoline derivatives obtained through Imino Diels-Alder reactions as potential antitumoral agents. Lett Drug Des Discov 2010;7:632–639.
Mosmann T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J Immunol Methods 1983;65:55–63.
Colina C, Flores A, Castillo C, Rosario Garrido M del, Israel A, DiPolo R, Benaim G. Ceramide-1-P induces Ca2+ mobilization in Jurkat T-cells by elevation of Ins(1,4,5)-P3 and activation of a store-operated calcium channel. Biochem Biophys Res Commun 2005;336:54–60.
Grynkiewicz G, Poenie M, Tsien RY. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 1985;260:3440–3450.
Eletr S, Inesi G. Phospholipid orientation in sacroplasmic membranes: Spin-label ESR and proton NMR studies. Biochim Biophys Acta - Biomembr 1972;282:174–179.
Fiske CH, Subbarow Y. The colorimetric determination of phosphorus. J Biol Chem 1925;66:375–400.
Benaim G, Cervino V, Lopez-Estraño C, Weitzman C. Ethanol stimulates the plasma membrane calcium pump from human erythrocytes. Biochim Biophys Acta Bio membr 1994;1195:141–148.
Benaim G, Sanders JM, Garcia-Marchán Y, Colina C, Lira R, Caldera AR, Payares G, Sanoja C, Burgos JM, Leon-Rossell A, Concepcion JL, Schijman AG, Levin M, Oldfield E, Urbina JA. Amiodarone has intrinsic anti-Trypanosoma cruzi activity and acts synergistically with posaconazole. J Med Chem 2006;49:892–899.
Kagawa S, Gu J, Honda T, McDonnell TJ, Swisher SG, Roth JA, Fang B. Deficiency of caspase-3 in MCF7 cells blocks Bax-mediated nuclear fragmentation but not cell death. Clin Cancer Res 2001;7:1474–1480.
Obara K, Miyashita N, Xu C, Toyoshima I, Sugita Y, Inesi G, Toyoshima C. Structural role of countertransport revealed in Ca2+ pump crystal structure in the absence of Ca2+. Proc Natl Acad Sci 2005;102:14489– 14496.
Guex N, Peitsch MC. SWISS-MODEL and the Swiss-Pdb Viewer: An environment for comparative protein modeling. Electrophoresis 1997;18:2714–2723.
Fusi F, Saponara S, Gagov H, Sgaragli G. 2,5-Di-t-butyl-1,4 benzohydroquinone (BHQ) inhibits vascular L -type Ca2+ channel via superoxide anion generation. Br J Pharmacol 2001;133:988–996.
Lytton J, Westlin M, Hanley MR. Thapsigargin inhibits the sarcoplasmic or endoplasmic reticulum Ca-ATPase family of calcium pumps. J Biol Chem 1991;266:17067– 17071.
Thompson M. ArgusLab 4.0 Planaria Software. LLC: Seatle, WA. 2004. Becke AD. A new mixing of Hartree–Fock and local density‐functional theories. J Chem Phys 1993;98:1372–1377.
Young DC. Computational Drug Design. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2009.
Colina C, Flores A, Rojas H, Acosta A, Castillo C, Rosario Garrido M del, Israel A, DiPolo R, Benaim G. Ceramide increase cytoplasmic Ca2+ concentration in Jurkat T cells by liberation of calcium from intracellular stores and activation of a store-operated calcium channel. Arch Biochem Biophys 2005;436:333–345.
Moore GA, McConkey DJ, Kass GEN, O’Brien PJ, Orrenius S. 2,5-Di(tertbutyl)-1,4-benzohydroquinone - a novel inhibitor of liver microsomal Ca2+ sequestration. FEBS Lett 1987;224:331–336.
Tang D, Lahti JM, Kidd VJ. Caspase-8 activation and bid cleavage contribute to MCF7 cellular execution in a caspase-3-dependent manner during staurosporine-mediated apoptosis. J Biol Chem 2000;275:9303– 9307.
Schmitz ML, Bacher S, Dienz O. NF‐ĸB activation pathways induced by T cell costimulation. FASEB J 2003;17:2187–2193.
Lee WJ, Monteith GR, Roberts-Thomson SJ. Calcium transport and signaling in the mammary gland: Targets for breast cancer. Biochim Biophys Acta - Rev Cancer 2006;1765:235–255.
Tadini-Buoninsegni F, Smeazzetto S, Gualdani R, Moncelli MR. Drug interactions with the Ca2+-ATPase from sarco (endo) plasmic reticulum (SERCA). Front Mol Biosci 2018;5:36.
Demaurex N. Cell biology: Apoptosis--the calcium connection. Science 2003;300:65– 67.
Vercesi AE, Moreno SN, Bernardes CF, Meinicke AR, Fernandes EC, Docampo R. Thapsigargin causes Ca2+ release and collapse of the membrane potential of Trypanosoma brucei mitochondria in situ and of isolated rat liver mitochondria. J Biol Chem 1993;268:8564–8568.