SARS-CoV-2: Potencial transmisión feco-oral e implicaciones en la propagación y gravedad del COVID-19 en Venezuela. Mini-revisión.

SARS-CoV-2: Potential feco-oral transmission and implications on the spread and severity of COVID-19 in Venezuela. Mini-review.

  • Leonor Chacín-Bonilla Universidad del Zulia
  • Nathalie Chacón University of Texas Rio Grande Valley
Palabras clave: SARS-CoV-2, COVID-19, transmisión, Venezuela

Resumen

La transmisión reconocida del SARS-CoV-2 de persona a persona es a través de gotitas respiratorias y contacto con superficies contaminadas. Sin embargo, la gran transmisibilidad del virus y el modelo de síntomas del COVID-19 hacen pensar en la probabilidad de otras formas de propagación. Evidencias crecientes sugieren que SARS-CoV-2 podría transmitirse por vía feco-oral. Se sabe que SARS-CoV-2 infecta las células epiteliales gastrointestinales y un número significativo de personas infectadas tienen síntomas gastrointestinales. En las heces de pacientes con COVID-19, se han detectado virus viables, ARN viral y la eliminación prolongada de ARN viral. Se ha detectado el virus en las aguas residuales y superficiales de varios países. La posible transmisión feco-oral del SARS-CoV-2 podría ser significativa en países de bajos ingresos. Los altos niveles de pobreza y el colapso del sistema de salud y de otros servicios públicos podrían aumentar el riesgo de los venezolanos de sufrir un impacto más devastador de la COVID-19 que otras poblaciones. En conclusión, la transmisión feco-oral de SARS-CoV-2 no se ha demostrado. Sin embargo, es concebible y el impacto de la COVID-19 podría ser alto en países de bajos ingresos, especialmente en Venezuela debido a su crisis humanitaria. La falta de información sobre la viabilidad e infectividad del virus en aguas residuales y superficiales y el riesgo de transmisión de la infección son brechas importantes en el conocimiento que necesitan una mayor investigación.

Descargas

La descarga de datos todavía no está disponible.

Biografía del autor/a

Leonor Chacín-Bonilla, Universidad del Zulia

Instituto de Investigaciones Clínicas “Dr. Américo Negrette”, Facultad de Medicina, Universidad del Zulia, Maracaibo, Venezuela

Nathalie Chacón, University of Texas Rio Grande Valley
Department of Public Health, School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX, USA

Citas

Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, Zhao X, Huang B, Shi W, Lu R, Niu P, Zhan F. A novel Coronavirus from patients with pneumonia in China, 2019. N Engl J Med 2020;382:727-733.

Johns Hopkins Coronavirus Resource Center. 2021. https://coronavirus.jhu.edu/. Accessed April 29, 2021.

World Health Organization. Modes of transmission of virus causing COVID-19: implications for IPC precaution recommendations. 2020. https://WHO/2019-nCoV/ Sci_Brief/Transmission_modes/2020.2.

Cai J, Sun W, Huang J, Gamber M, Wu J, He GS. Indirect virus transmission in cluster of COVID-19 cases, Wenzhou, China, 2020. Emerg Infect Dis 2020; 26(6): 1343-1345.

Yeo C, Kaushal S, Yeo D. Enteric involvement of coronaviruses: is faecaloral transmission of SARS-CoV-2 possible? Lancet Gastroenterol Hepatol 2020;5(4):335-337.

Guan W, Ni Z, Hu Y, Liang W, Ou C, He J, Liu L, Shan H, Lei C, Hui D, Du B, Li L. Clinical characteristics of Coronavirus disease 2019 in China. N Engl J Med 2020;382(18):1708-1720.

Pan L, Mu M, Yang P, Sun Y, Wang R, Yan J, Li P, Shan H, Lei C, Hui D, Du B, Li L. Clinical characteristics of COVID-19 patients with digestive symptoms in Hubei, China: A descriptive, cross-sectional, multicenter study. Am J Gastroenterol 2020; 115(5): 766-773.

Ling Y, Xu S-B, Lin Y-X, Tian D, Zhu Z-Q, Dai F-H, Wu F, Song Z-G, Huang W, Chen J, Hu B-J, Wang S, Mao E-Q, Zhu L, Zhang W-H, Lu H-Z. Persistence and clearance of viral RNA in 2019 novel coronavirus disease rehabilitation patients. Chin Med J 2020; 133(9):1039-1043. Available from: doi. org/10.1097/CM9.0000000000000774

Tang A, Tong Z-D, Wang H-L, Dai Y-X, Li K-F, Liu J-N, Wu W-J, Yuan C, Yu M-L, Li P, Yan J-B. Detection of novel Coronavirus by RT-PCR in stool specimen from asymptomatic child, China. Emerg Infect Dis 2020;26(6):1337-1339.

van Doorn AS, Meijer B, Frampton CM, Barclay ML, de Boer NK. Systematic review with meta-analysis: SARS-CoV-2 stool testing and the potential for faecal-oral transmission. Aliment Pharmacol Ther 2020;52(8):1276-1288. doi.org/10.1111/apt.16036

Zheng S, Fan J, Yu F, Feng B, Lou B, Zou Q, Xie G, Lin S,Wang R, Yang X, Chen W, Wang Q, Zhang D, Liu Y, Gong R, Ma Z, Lu S, Xiao Y, Gu Y, Zhang J, Yao H, Xu K, Lu X, Wei G, Zhou J, Fang Q, Cai H, Qui Y, Sheng J, Chen Y, Liang T. Viral load dynamics and disease severity in patients infected with SARS-CoV-2 in Zhejiang province, China, January-March 2020: retrospective cohort study. BMJ 2020;369:m1443. doi. org/10.1136/bmj.m1443.

Hindson J. COVID-19: faecal–oral transmission? Nat Rev Gastroenterol Hepatol 2020;17(5):259. Available from: doi. org/10.1038/s41575-020-0295-7.

Wölfel R, Corman VM, Guggemos W, Seilmaier M, Zange S, Müller MA, Niemeyer D, Jones T, Vollmar P, Rothe C, Hoelscher M, Bleicker T, Brünink S, Schneider J, Ehmann R, Zwirglmaier K, Christian Drosten C, Wendtner C. Virological assessment of hospitalized patients with COVID-2019. Nature 2020;581:465- 469. doi. org/10.1038/s41586-020-2196-x

Xiao F, Tang M, Zheng X, Liu Y, Li X, Shan H. Evidence for gastrointestinal infection of SARS-CoV-2.Gastroenterology 2020;158 (6):1831-33.e3. doi.org/10.1053/j.gastro. 2020.02.055.

Wu A, Peng Y, Huang B, Ding X, Wang X, Niu P, Meng J, Zhu Z, Zhang Z, Wang J, Sheng J, Quan L, Xia Z, Tan W, Cheng G, Jiang T. Genome composition and divergence of the novel Coronavirus (2019- nCoV) originating in China. Cell Host Microbe 2020; 27(3): 325-328.

Fehr AR, Perlman S. Coronaviruses: an overview of their replication and pathogenesis. Methods Mol Biol 2015; 1282:1-23. doi.org/ 10.1007/978-1-4939-2438-7_1

Jin Y, Jin Y, Yang H, Ji W, Wu W, Chen S, Zhang W, Duan G. Virology, epidemiology, pathogenesis, and control of COVID-19. Viruses 2020; 12(4): 372-388.

Ding S, Liang TJ. Is SARS-CoV-2 also an enteric pathogen with potential fecal-oral transmission? A COVID-19 virological and clinical review. Gastroenterology 2020;159 (1): 53-61.

Zhang T, Wu Q, Zhang Z. Probable pangolin origin of SARS-CoV-2 associated with the COVID19 outbreak. Curr Biol 2020; 30 (7): 1346-1351.

Hikmet F, Méar L, Edvinsson A, Micke P, Uhlén M, Lindskog C. The protein expression profile of ACE2 in human tissues. Mol Syst Biol 2020; 16: e9610. doi. org/10.15252/msb.20209610.

Nemudryi A, Nemudraia A, Wiegand T, Surya K, Buyukyoruk M, Vanderwood KK, Wilkinson R, Wiedenheft B. Temporal detection and phylogenetic assessment of SARS- CoV-2 in municipal wastewater. MedRxiv 2020. doi.org/10.1101/2020.04.15.2 0066746.

Wurtzer S, Marechal V, Mouchel JM, Moulin L. Time course quantitative detection of SARS-CoV-2 in Parisian wastewaters correlates with COVID-19 confirmed cases MedRxiv 2020. doi.org/10.1101/2020.04.12.2 0062679.

Randazzo W, Truchado P, Cuevas-Ferrando E, Simón P, Allende A, Sánchez G. SARS- CoV-2 RNA in wastewater anticipated COVID-19 occurrence in a low prevalence area. Water Res 2020;181:115942. doi. org/10.1016/j.watres.2020.115942.

Giacobbo A, Rodrigues MAS, Zoppas Ferreira J, Bernardes AM, de Pinho MN. A critical review on SARS-CoV-2 infectivity in water and wastewater. What do we know? Sci Total Environ. 2021; 774:145721. doi. org/10.1016/j.scitotenv.2021.145721.

Fongaro G, Stoco PH, Marques Souza DS, Edmundo Carlos Grisard EC, Maria Elisa Magri ME, Rogovski P, Schörner MA, Barazzetti FH, Christoff AP, Valter de Oliveira LF, Bazzo ML, Wagner G, Hernández M, David Rodríguez-Lázaro D. The presence of SARS-CoV-2 RNA in human sewage in Santa Catarina, Brazil. Sci Total Environ 2021; 778: 146198. doi. org/10.1016/j.scitotenv.2021.146198.

Guerrero-Latorre L, Ballesteros I, Villacres-Granda I, Granda MG, Freire-Paspuel B, Ríos-Touma B. SARS-CoV-2 in river water: implications in low sanitation countries. Sci Total Environ 2020; 743: 140832. doi.org/10.1016/j.scitotenv.2020.140832.

Balboa S, Mauricio-Iglesias M, Rodríguez S, Martínez-Lamas L, Vasallo FJ, Regueiro, B, Lema JM. The fate of SARS-CoV-2 in wastewater treatment plants points out the sludge line as a suitable spot for incidence monitoring. MedRxiv 2020. doi. org/10.1101/2020.05.25.2011270.

Baldovin T, Amoruso I, Fonzo M, Buja A, Baldo V, Cocchio S, Bertoncello C. SARS- CoV-2 RNA detection and persistence in wastewater samples: an experimental network for COVID-19 environmental surveillance in Padua, Veneto Region (NE Italy). Sci Total Environ 2021; 760:143329. doi. org/10.1016/j.scitotenv.2020.143329.

Westhaus S, Weber FA, Schiwy S, Linnemann V, Brinkmann M, Widera M, Greve C, Janke A, Hollert H, Wintgens T, Ciesek S. Detection of SARS-CoV-2 in raw and treated wastewater in Germany-suitability for COVID-19 surveillance and potential transmission risks. Sci Total Environ 2021; 751:141750. doi.org/ 10.1016/j.scitotenv.2020.141750.

Zhang D, Ling H, Huang X, Li J, Li W, Yi C, Zhang T, Jiang Y. Potential spreading risks and disinfection challenges of medical wastewater by the presence of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) viral RNA in septic tanks of Fangcang Hospital. Sci Total Environ 2020; 741:140445. doi.org/10.1016/j. scitotenv.2020.140445.

Saguti F, Magnil E, Enache L, Churqui MP, Johansson A, Lumley D, Davidsson F, Dotevall L, Mattsson A, Trybala E, Lagging M, Lindh M, Gisslén M, Brezicka T, Nyström K, Norder H. Surveillance of wastewater revealed peaks of SARSCoV-2 preceding those of hospitalized patients with COVID-19. Water Res 2021; 189:116620.
doi.org/10.1016/j.watres.2020.11662031.

Haramoto E, Malla B, Thakali O, Kitajima M. First environmental surveillance for the presence of SARS-CoV-2 RNA in wastewater and river water in Japan. Sci Total Environ 2020; 737:140405. doi.org/10.1016/j.sci- totenv.2020.140405.

Rimoldi SG, Stefani F, Gigantiello A, Polesello S, Comandatore F, Mileto D, Maresca M, Longobardi C. Mancon A, Romeri F, Pagani C, Cappelli F, Roscioli C, Moja L, Gismondo MR, Salerno F. Presence and infectivity of SARS-CoV-2 virus in wastewaters and rivers. Sci Total Environ 2020; 744:140911. doi.org/10.1016/j. scitotenv.2020.140911

Gundy PM, Gerba CP, Pepper IL. Survival of coronaviruses in water and wastewater. Food Environ Virol 2009;1(1):10-14. doi. org/10.1007/s12560-008-9001-6.

Carraturo F, Del Giudice C, Morelli M, Cerullo V, Libralato G, Galdiero E, Guida M.Persistence of SARS-CoV-2 in the environment and COVID-19 transmission risk from environmental matrices and surfaces. Environ Pollut 2020; 265:115010. doi. org/10.1016/j.envpol.2020.115010.

Garcia-Gil A, Martinez A, Polo-Lopez MI, Marugan J. Kinetic modeling synergistic thermal and spectral actions on the inactivation of viruses in water by sunlight. Water Res 2020; 183116074. doi.org/10.1016/j. watres.2020.116074.

Pirouz B, Golmohammadi A, Saeidpour Masouleh H, Violini G, Pirouz B. Relationship between average daily temperature and average cumulative daily rate of confirmed cases of COVID-19. MedRxiv 2020. doi.org/ 10.1101/2020.04.10.20059337.

Lotfi M, Hamblin MR, Rezaei N. COVID-19: Transmission, prevention, and potential therapeutic opportunities. Clin Chim Acta 2020; 508:254-266. doi.org/10.1016/j.cca.2020.05.044

AtkinsonB, Petersen E. SARS-CoV-2 shedding and infectivity. Lancet 2020; 395: 10233: 1339-1340.

Xu Z. Can the novel coronavirus be transmitted via RNAs without protein capsids? J Infect Dev Ctries 2020; 14 (9):1001-1003.

Bandala ER, Kruger BR, Cesarino I, Leao AL, Wijesiri B, Goonetilleke A. Impacts of COVID-19 pandemic on the wastewater pathway into surface water: A review. Sci Total Environ 2021; 774:145586. doi. org/10.1016/j.scitotenv.2021.145586.

Bastaraud A, Cecchi P, Handschumacher P, Altmann M, Jambou R. Urbanization and waterborne pathogen emergence in low-income countries: where and how to conduct surveys? Int J Environ Res Public Health 2020; 17(2): 480-498.

Universidad Católica Andres Bello. Encuesta Nacional de Condiciones de Vida (ENCOVI) 2019-2020. https://www.pro- yectoencovi.com/informe-interactivo-2019.

World Food Program. Venezuela food security assessment, main findings data collected between July and September 2019. 2020. https://reliefweb.int/report/venezue- la-bolivarian -republic/wfp-venezuela-food- security-assessment-main-findings-data.

Garcia J, Correa G, Rousset B. Trends in infant mortality in Venezuela between 1985 and 2016: a systematic analysis of demographic data. Lancet Glob Health 2019; 7:e331- e36. doi.org/10.1016/S2214-109X (18)30479-0

Centro de Paz y Justicia (CEPAZ). Emergencia humanitaria compleja en Venezuela: derecho al agua. 2018. https://cepaz.org/ documentos_informrs/emergencia-huma- nitaria- compleja-en-venezuela-derecho-al- agua/

World Health Organization. Preventing disease through healthy environments: global assessment of the burden of disease from environmental risks. 2016. https://www. who.int/quantif ying_ehimpacts/publications/preventing-disease/en/

World Health Organization. Atlas on children’s health and the environment. 2017. https://apps.who.int/iris/bitstream/ 10665/254677/1/9789241511773-eng

Chacín-Bonilla L. Perfil epidemiológico de las enfermedades infecciosas en Venezuela. Invest Clin 2017;58 (2):103-105.

Pan American Health Organization/World Health Organization. Epidemiological update: Measles. Oct 24 2018. 2018. https:// www.paho.org

Pan American Health Organization / World Health Organization. Epidemiological update: Diphtheria. March 18, 2019.
2019. htpps://www.paho.org

World Health Organization. World malaria report 2018. 2018. https://www.who. int/malaria/publications/world-malaria- report-2018/report/en/

Noya BA, Díaz-Bello Z, Colmenares C, Ruiz-Guevara R, Mauriello L, Muñoz- Calderon A, Noya O. Update on oral Chagas disease outbreaks in Venezuela: epidemiological, clinical and diagnostic approaches. Mem Inst Oswaldo Cruz 2015; 110 (3): 377-386.

Vincenti-Gonzalez MF, Tami A, Lizarazo EF, Grillet ME. ENSO-driven climate variability promotes periodic major outbreaks of dengue in Venezuela. Sci Rep 2018; 8: 5727. doi.org/10.1038/s41598-018-24003-z

Pan American Health Organization. Reported cases of dengue fever in the Americas by country or territory. WHO. 2018. http://www.paho.org/data/index.php/en/ mnu-topics/ indicadores-dengue-en/den- gue-nacional-en/252-dengue-pais-ano-en. html

Oletta JF. Epidemia de fiebre chikungunya en Venezuela, 2014-2015. Gac Méd Caracas 2016; 124 (2): 122-137.

Organización Panamericana de la Salud / Organización Mundial de la Salud. Actualización Epidemiológica: Dengue y otras arbovirosis. Jun 10, 2020. https://www.paho.org.

Chacín-Bonilla L. El problema de las parasitosis intestinales en Venezuela. Invest Clin 1990; 31(1):1-2.

Chacín-Bonilla L. Geohelmintiasis in Venezuela: Un viejo y grave problema que tiende a persistir. Invest Clin 1985; 26 (1):1-3.

Chacín-Bonilla L, Dikdan Y. Prevalencia de Entamoeba histolytica y otros parasitos intestinales en una comunidad suburbana de Maracaibo. Invest Clin 1981; 22 (4):185-203.

Chacín de Bonilla L, Zea A, Sánchez Y, Fuenmayor N. Prevalencia de Entamoeba histolytica y otros parásitos intestinales en una comunidad del distrito Miranda, estado Zulia. Invest Clin 1987; 28 (3):117-131.

Chacín-Bonilla L, Dikdan Y, Guanipa N, Villalobos R. Prevalencia de Entamoeba histolytica y otros parásitos intestinales en un barrio del municipio Mara, estado Zulia, Venezuela. Invest Clin 1990;31(1):3-15.

Chacín-Bonilla L, Barrios F, Sanchez Y. Epidemiology of Cyclospora cayetanensis infection in San Carlos Island, Venezuela: strong association between socio-economic status and infection. Trans R Soc Trop Med Hyg 2007;101 (10):1018-1024.

Incani R N, Ferrer E, Hoek D, Ramak R, Roelfsema J, Mughini-Gras L, Kortbeek T, Pinelli E. Diagnosis of intestinal parasites in a rural community of Venezuela: Advantages and disadvantages of using microscopy or RT-PCR. Acta Trop 2017;167 (1) 64-70.

Chacín-Bonilla L. Criptosporidiosis en humanos. Invest Clin 1995; 36(4):207-50.

Chacín-Bonilla L. Cyclospora cayetanensis. In: Rose JB, Jimenez-Cisneros B, Eds. Global Water Pathogens Project. Lansing, MI: E. Lansing, UNESCO; 2017. P 1-43. https://www.waterpathogens.org/book/ cyclospora-cayetanensis

Chacín-Bonilla L, Barrios F, Sanchez Y. Environmental risk factors for Cryptosporidium infection in an Island from Western Venezuela. Mem Inst Oswaldo Cruz 2008;103(1):45- 49.

Abdoli A. Helminths and COVID-19 coinfections: A neglected critical challenge. ACS Pharmacol Transl Sci 2020; 3(5):1039-1045. https://doi.org/10.1021/ acsptsci.0c00141.

Verhagen LM, Hermans PW, Warris A, De Groot R, Maes M, Villalba JA, del Nogal B, van den Hof S, Mughini Gras L, van Soolingen D, Pinelli E, de Waard JH. Helminths and skewed cytokine profiles increase tuberculin skin test positivity in Warao Amerindians. Tuberculosis 2012; 92 (6): 505-512.

Gutman JR, Lucchi NW, Cantey PT, Steinhardt LC, Samuels AM, Kamb ML, Kapella BK, McElroy PD, Udhayakumar V, Kim Lindblade KA. Malaria and parasitic neglected tropical diseases: Potential syndemics with COVID-19?. Am J Trop Med Hyg 2020;103(2):572-577.

Bwanika R, Kato CD, Welishe J, Mwandah DC. Cytokine profiles among patients coinfected with Plasmodium falciparum malaria and soil borne helminths attending Kampala International University Teaching Hospital, in Uganda. Allergy Asthma Clin Immunol 2018;14(10):1-9.

Zakeri A, Hansen EP, Andersen SD, Williams AR, Nejsum P. Immunomodulation by helminths: Intracellular pathways and extracellular vesicles. Front Immunol 2018;9:2349. doi.org/ 10.3389/fimmu.2018.02349

Gobierno Bolivariano de Venezuela. Ministerio del Poder Popular para la Salud. https://www.mpps.gob.ve/. Accessed April 29, 2021.

Gobierno de Colombia. Ministerio de Salud y Protección Social. Coronavirus (COVID- 19). ttps://www.minsalud.gov.co/.
Publicado
2021-07-31
Cómo citar
Chacín-Bonilla, L., & Chacón, N. (2021). SARS-CoV-2: Potencial transmisión feco-oral e implicaciones en la propagación y gravedad del COVID-19 en Venezuela. Mini-revisión.: SARS-CoV-2: Potential feco-oral transmission and implications on the spread and severity of COVID-19 in Venezuela. Mini-review. Investigación Clínica, 62, 58-68. https://doi.org/10.22209/IC.v62s2a05
Sección
Revisiones