Inflamasoma, piroptosis y su posible relación con la fisiopatología de la COVID-19. / Inflammation, pyroptosis and its possible relation to the physiopathology of COVID-19.

Palabras clave: inflamasoma, piroptosis, inmunidad innata, fisiopatología, COVID-19, inflammasome, pyroptosis, innate immunity, physiopathology, COVID-19.

Resumen

Resumen.

SARS-CoV-2 es el agente causal de la pandemia actual de la enfermedad por coronavirus 2019 (COVID-19). Al igual que otros coronavirus respiratorios, el SARS-CoV-2 se transmite principalmente a través de gotitas respiratorias liberadas de una persona infectada. La fisiopatología de la infección por SARS-CoV-2 es semejante a la de la infección por SARS-CoV, con respuestas inflamatorias agresivas lo que genera fuertes daños a las vías respiratorias. En esta revisión abordamos la importancia de la respuesta inmunitaria innata en la fisiopatología de la COVID-19, con especial énfasis en la activación del inflamasoma y la consecuente muerte celular por piroptosis, dos elementos esenciales que podrían explicar la exacerbada respuesta inflamatoria que se observa en algunos pacientes.

Abstract.

SARS-CoV-2 is the causal agent of the current 2019 coronavirus disease pandemic (COVID-19). Like other respiratory coronaviruses, SARSCoV-2 is transmitted primarily through respiratory droplets released from an infected person. The pathophysiology of SARS-CoV-2 infection is similar to that of SARS-CoV infection, with aggressive inflammatory responses resulting in severe damage to the respiratory tract. In this review we address the importance of the innate immune response in the physiopathology of COVID-19 with special emphasis on the activation of the inflammasome and the consequent cell death by pyroptosis, two essential elements that could explain the exacerbated inflammatory response observed in some patients.

Descargas

La descarga de datos todavía no está disponible.

Citas

Fehr AR, Perlman S. Coronaviruses: an overview of their replication and pathogenesis. Methods Mol Biol 2015; 1282:1-23.

Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, Qiu Y, Wang J, Liu Y, Wei Y, Xia J, Yu T, Zhang X, Zhang L. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in

Wuhan, China: A descriptive study. Lancet 2020; 395:507–513.

Zhu N, Zhang D, Wang W, Xingwang Li, Yang B, Song J, Zhao, Baoying Huang X, Shi W, Lu R, Niu P, Zhan F, Ma X, Wang D, Xu D, Wu G, Gao G, Tan W. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med 2020; 382(8):727-733.

Lu R, Zhao X, Li J, Niu P, Yang B, Wu H. Genomic characterization and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet 2020; 395:565–574.

Kannan S, Shaik P, Sheeza A, Hemalatha K. COVID-19 (Novel Coronavirus 2019) – recent trends. Eur Rev Med Pharmacol Sci 2020; 24:2006-2011.

Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, Zhang L, Fan G, Xu J, Gu X, Chen Z, Yu T, Xia J, Wei Y, Wu W, Xie X, Yin W, Li H, Min L, Xiao Y, Gao H, Guo L, Xie J, Wang G, Jiang R, Gao Z, Jin Q, Wang J, Cao B. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020; 395:497–506.

Liu J, Zheng X, Tong Q, Li W, Wang B, Sutter K, Trilling M, Lu M, Dittmer U, Yang D. Overlapping and discrete aspects of the pathology and pathogenesis of the emerging human pathogenic coronaviruses SARS-CoV, MERS-CoV, and 2019-nCoV. J Med Virol 2020; 92(5):491-494.

Xiaoyi H, Fengxiang W, Liang H, Lijuan W, Ken C. Epidemiology and clinical characte- ristics of COVID-19. Arch Iran Med 2020; 23(4):268-271.

Guo YR, Cao QD, Hong ZS, Tan Y, Deng S, Jin H, Tan K, Wang DY, Yan Y. The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak an update on the status. Mil Med Res. 2020; 7(1):11.

McIntosh K, Peiris J. Coronaviruses. In: Richman D, Whitley R, Hayden F (ed), Clinical Virology. Third Edition, Washington, DC: ASM Press; 2009. p 1155-1171.

Masters PS. Coronavirus genomic RNA packaging. Virology 2019; 537:198-207.

Hoffmann M, Kleine Weber H, Schroeder

S. CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 2020; 181:271- 280.e8.

Ding Y, He L, Zhang Q, Huang Z, Che X, Hou J, Wang H, Shen H, Qiu L, Li Z, Geng J, Cai J, Han H, Li X, Kang W, Weng D, Liang P, Jiang S. Organ distribution of severe acute respiratory syndrome (SARS) associated coronavirus (SARS-CoV) in SARS patients: implications for pathogenesis and virus transmission pathways. J Pathol 2004; 203(2):622-630.

Wan Y, Shang J, Graham R, Baric RS, Li F. Receptor recognition by novel coronavirus from Wuhan: an analysis based on decadelong structural studies of SARS. J Virol 2020; 94(7):e00127-20.

Li W, Moore MJ, Vasilieva N, Sui J, Wong S, Berne M, Somasundaran M, Sullivan J, Luzuriaga K, Greenough T, Choe H, Farzan M. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature 2003; 426: 450-454.

Paules CI, Marston HD, Fauci AS. Coronavirus infections—more than just the com- mon cold. JAMA 2020; 323(8):707–708.

Azkur AK, Akdis M, Azkur D, Sokolowska M, Van de Veen W, Brüggen M, O´Mahony L, Gao Y, Nadeau K, Acdis C. Immune response to SARS-CoV-2 and mechanisms of immunopathological changes in COVID-19. Allergy 2020; 75(7):1564-1581.

Zhang W, Zhao Y, Zhang F, Wang Li T, Liu Z, Wang J, Qin Y, Zhang X,

Yan X, Zeng X, Zhang S. The use of anti inflammatory drugs in the treatment of people with severe coronavirus disease 2019 (COVID-19): The Perspectives of clinical immunologists from China. Clin Immunol 2020; 214:108393.

Yao X, Li T, He Z, Ping Y, Liu H, Yu S, Mou H, Wang L, Zhang H, Fu W. A pathological report of three COVID-19 cases by minimally invasive autopsies. Zhonghua Bing Li Xue Za Zhi 2020; 49(5):411-417.

Xu Z, Shi L, Wang Y, Zhang J, Huang L, Zhang C, Liu S, Zhao P, Liu H, Zhu L. Patho- logical findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med 2020; 8(4): 420–422.

Ackermann M, Verleden SE, Kuehnel M, Haverich A, Welte T, Laenger F, Vanstapel A, Werlein C, Stark H, Tzankov A, Li WW, Li VW, Mentzer SJ, Jonigk D. Pulmonary vascular endothelialitis, thrombosis, and angiogenesis in Covid-19. N Engl J Med 2020; 383(2):120-128.

Martinon F, Gaide O, Pétrilli V, Mayor A, Tschopp J. NALP inflammasomes: a central role in innate immunity. Semin Immuno pathol 2007; 29(3):213–29.

Hennessy EJ, Parker AE, O’Neill LA. Targeting Tolllike receptors: emerging therapeutics? Nat Rev Drug Discov 2010; 9(4):293-307.

Bryant C, Fitzgerald KA. Molecular mechanisms involved in inflammasome activation. Trends Cell Biol 2009; 19(9):455–464.

Martinon F, Burns K. Tschopp J. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing proIL -1β. Mol Cell 2020; 10:417–426.

Lamkanfi M, Dixit VM. Mechanisms and functions of inflammasomes. Cell 2014; 157(5):1013-1022.

Latz E. The inflammasomes: mechanisms of activation and function. Curr Opin Immunol 2010; 22(1):28-33.

Guo H, Callaway JB, Ting JP. Inflammasomes: mechanism of action, role in disease, and therapeutics. Nat Med 2015; 21(7):677-687.

Iwasaki A. A virological view of innate immune recognition. Annu Rev Microbiol 2012; 66: 177–196.

Han Y, Zhang H, Mu S, Wei W, Jin Ch, Tong Ch, Song Z, Zha Y, Xue Y, Gu G. Lactate dehydrogenase, an independent risk factor of severe COVID-19 patients: a retrospective and observational study. Aging (Albany NY) 2020; 12(12):11245-11258.

Rayamajhi M, Zhang Y, Miao EA. Detection of pyroptosis by measuring released lactate dehydrogenase activity. Methods Mol Biol 2013; 1040:85-90.

Hoffman HM, Broderick L. The role of the inflammasome in patients with autoinflam matory diseases. J Allergy Clin Immunol 2016; 138(1):3-14.

Schroder K, Tschopp J. The inflammasomes. Cell 2010; 140:821-832.

Fernandes T, Wu J, Yu J, Datta P, Miller B, Jankowski, Rosemberg S, Zhang J, Alnemri E. The pyroptosome: a supramolecular assembly of ASC dimers mediating inflammatory cell death via caspase-1 activation. Cell Death Differ 2007; 14(9):1590-1604.

Jin C, Flavell R. Molecular mechanism of nlrp3 inflammasome

activation. J Clin Immunol 2010; 30:628-631.

Von Moltke J, Ayres JS, Kofoed EM, Chavarria-Smith J, Vance RE. Recognition of bacteria by inflammasomes. Annu. Rev Immunol 2013; 31,73–106.

Man SM, Karki R, Kanneganti TD. AIM2 inflammasome in infection, cancer, and au- toimmunity: Role in DNA sensing, inflammation, and innate immunity. Eur J Immunol 2016; 46(2):269-280.

Tschopp J, Schroder K. NLRP3 inflammasome activation: the convergence of multiple signaling pathways on ROS production? Nature Rev Immunol 2010; 10:210-215.

Ratajczak MZ, Bujko K, Cymer M, Thapa A, Adamiak M, Ratajczak J, Abdel Latif A, Kucia M. The Nlrp3 inflammasome as a “rising star” in studies of normal and malignant hematopoiesis. Leukemia 2020; 34(6):1512-1523.

Place DE, Kanneganti TD. Recent advances in inflammasome biology. Curr Opin Immunol 2018; 50:32–38.

Krishnan S, Ling Y, Huuskes B, Ferens D, Saini N, Chan C, Diep H, Kett M, Samuel C, Kem Harper B, Robertson A, Cooper M, Pedro K, Latz E, Mansell A, Sobey Ch, Drummond D, Vinh A. Pharmacological inhibition of the NLRP3 inflammasome reduces blood pressure, renal damage, and dysfunction in saltsensitive hypertension. Cardiovasc Res 2019; 115:776–787.

Colarusso C, Terlizzi M, Molino A, Pinto A, Sorrentino R. Role of the inflammasome in chronic obstructive pulmonary disease (COPD). Oncotarget 2017; 8(47):81813-81824.

Lee H, Kim J, Kim H, Shong M, Ku B, Jo E. Upregulated NLRP3 inflammasome activation in patients with type 2 diabetes. Diabetes 2013; 62: 194–204.

Sarvestani S, McAuley J. The role of the NLRP3 inflammasome in regulation of antiviral responses to influenza A virus infection. Antiviral Res 2017; 148:32-42.

Segovia J, Sabbah A, Mgbemena V, Tsai S, Chang T, Berton M, Morris I, Allen I, Ting J, Bose S. TLR2/MyD88/NF-κB pathway, reactive oxygen species, potassium efflux activates NLRP3/asc inflammasome during respiratory syncytial virus infection. PLoS One 2012; 7(1): 1-15.

Chen IY, Moriyama M, Chang MF, Ichinohe

T. Severe acute respiratory syndrome coronavirus viroporin 3a activates the NLRP3 in flammasome. Front Microbiol 2019; 10:50.

Murakami T, Ockinger J, Yu V, Byles A, McColl A, Hofer M, Horng T. Critical role for calcium mobilization in activation of the NLRP3 inflammasome. Proc Natl Acad Sci. USA 2012; 109:11282–11287.

Lieberman J, Wu H, Kagan J. Gasdermin D activity in inflammation and host defense. Sci Immunol 2019; 4(39):eaav1447.

Kovacs SB, Miao EA. Gasdermins: effectors of pyroptosis. Trends Cell Biol 2017; 27: 673–684.

Magro C, Mulvey JJ, Berlin D, Nuovo G, Salvatore S, Harp J, Baxter Stoltzfus A, Laurence J. Complement associated microvascular injury and thrombosis in the pathogenesis of severe COVID-19 infection: A report of five cases. Transl Res 2020; 220:1-13.

Violi F, Pastori D, Cangemi R, Pignatelli P, Loffredo L. Hypercoagulation and antithrombotic treatment in Coronavirus 2019: a new challenge. Thromb Haemost 2020; 120(6):949-956.

Pinar A, Scott T, Huuskes B, Tapia Cáceres F, Kemp-Harper B, Samuel SC. Targeting the NLRP3 inflammasome to treat cardiovascular fibrosis. Pharmacol Ther 2020; 209:107511.

Publicado
2021-01-13
Cómo citar
Pedreáñez, A., Mosquera, J., & Muñoz, N. (2021). Inflamasoma, piroptosis y su posible relación con la fisiopatología de la COVID-19. / Inflammation, pyroptosis and its possible relation to the physiopathology of COVID-19. Investigación Clínica, 61(3), 283-293. https://doi.org/10.22209/IC.v61n3a07