Efecto del 2-aminoindano rígido, derivado del acenafteno, sobre la conducta estereotipada de ratas. Papel del sistema dopaminérgico cerebral. / Effect of the rigid 2-aminoindano, derived from acenaphthene, on stereotyped behavior in rats. Role of brain dopaminergic system.
Resumen
Resumen.
Las enfermedades neurodegenerativas y neuropsiquiátricas se encuentran directamente relacionadas con alteraciones o disfuncionalidad del sistema dopaminérgico central. Entre las primeras encontramos la enfermedad de Parkinson (EP), la disquinesia tardía, el síndrome de Tourette, la Corea de Huntington (EH), y entre las segundas la Esquizofrenia (EZ), la adicción, la manía, la depresión, y los desórdenes de la alimentación. Con el fin de contribuir con el arsenal terapéutico que permita restaurar la homeostasis de la neurotransmisión dopaminérgica central, se evaluó farmacológicamente el clorhidrato del 1-amino-6,7,8,8a-tetrahidroacenafteno 2 (Ja116a) mediante la cuantificación de sus efectos sobre la conducta estereotipada de ratas. Se emplearon ratas machos de la cepa Sprague-Dawley, a las que se les implantó una cánula intracerebroventricular (ICV). El compuesto 2 (Ja116a) fue administrado por vía ICV (5µg/5µL y 50µg/5µL), en presencia o ausencia de apomorfina (APO), haloperidol (HAL), buspirona (BUS) o ziprasidona (ZIP); o por vía intraperitoneal (IP) (1mg/Kg) en ratas tratadas con APO o HAL. Igualmente, un grupo de ratas fue sometido a denervación dopaminérgica central mediante la 6OH-dopamina (6OHDA). Los resultados mostraron que Ja116a induce una conducta estereotipada de roídas y olfateos (sistema extrapiramidal) y acicalamientos y lamidas (sistema límbico), efectos que fueron bloqueados por el HAL y reducidos por la buspirona y la 6OHDA. Estos hallazgos indican que Ja116 actúa principalmente como un agonista dopaminérgico postsináptico, por lo que podría proponerse como un fármaco novedoso para el tratamiento de enfermedades neurodegenerativas tales como la Enfermedad de Parkinson.
Abstract.
Neurodegenerative and neuropsychiatric diseases are directly related to alterations or dysfunction of the central dopaminergic system. Among the first are Parkinson’s disease (PD), tardive dyskinesia, Tourette’s syndrome, Huntington’s chorea (HD), and among the second, Schizophrenia (EZ), addiction, mania, depression, and eating disorders. In order to contribute to the therapeutic arsenal that allows restoring the homeostasis of central dopaminergic neurotransmission, 1-amino-6,7,8,8a-tetrahydro acenaphthene 2 hydrochloride (Ja116a) was pharmacologically evaluated by quantification of its effects on stereotyped behavior in rats. Male Sprague-Dawley rats were used and were implanted with an intracerebroventricular cannula (ICV). Compound Ja116a was ICV administered (5µg/5µL and 50µg/5µL), in the presence or absence of apomorphine (APO); haloperidol (HAL); buspirone (BUS) or ziprasidone (ZIP); or intraperitoneally (IP) (1mg/Kg) in rats treated with APO or HAL. Similarly, a group of rats was subjected to central dopaminergic denervation by 6OH-dopamine (6OHDA). The results show that Ja116a induces a stereotypical behavior of gnawing and sniffing (extrapyramidal system) and grooming and licking (limbic system), effects that were blocked by HAL and reduced by buspirone and 6OHDA. These findings indicate that Ja116 acts mainly as a postsynaptic dopaminergic agonist, so it could be proposed as a novel drug for the treatment of neurodegenerative diseases such as Parkinson’s disease.
Descargas
Citas
Sachar B, Zuk R, Gazawi H, Ljubuncic P. Dopamine toxicity involves mitochondrial complex I inhibition: implications to do-2receptores D por tener el farmacóforo (m-pamine-related neuropsychiatric disorders. hidroxifeniletilamino) y expresa las conductas estereotipadas lamidas, olfateos y acicalamientos (43,44).
Es importante mencionar lo acertado de la aproximación químico medicinal en el diseño de este compuesto, ya que está en concordancia con los resultados farmacológicos que revelan la acción agonística a través de la activación de los mecanismos dopaminérgicos sobre el sistema nervioso central. Es decir, que la actividad farmacológica como agonista ejercida por el compuesto 2 (Ja116a), Biochem Pharm 2004; 67(10): 1965-1974.
Zhang A, Neumeyer J, Baldessarini R. Recent progress in development of dopamine receptor subtype selective agents: potential therapeutics for neurological and psychiatric disorders. Chem Rev 2007; 1(28): 274-302.
Long J, Heintz S, Cannon J, Kim J. Inhibition of the sympathetic nervous system by 5,6-dihydroxy-2- dimethylaminotetralin (M- 7), apomorphine and dopamine. J Pharmacol Exp Ther 1975; 192: 336-342.
Huang Y, Luedtke R, Freeman R, Wu L, Mach R. Synthesis and structure activity relationships of naphthamides as dopami está potenciada por los mecanismos antes mencionados y aquí se valida lo acertado de ne D receptor ligands. J Med Chem 2001; la aproximación químico medicinal en el diseño del fármaco, al considerar todas las estrategias farmacofóricas enmarcadas dentro del concepto de los profármacos; sólo que en este caso, bajo esta forma (no metabolizada) es activo en forma indirecta (IMAO y aumentando la DA endógena) y cuando es metabolizado es un agonista postsináptico con mayor afinidad hacia los receptores, los resultados farmacológicos publicados (20-22) y los presentes, están en plena concordancia con lo antes mencionado.
Finalmente, el compuesto 2 (Ja116a), podría constituir un fármaco potencial a ser incluido dentro del grupo de medicamentos empleados en la terapéutica de las enfermedades neurodegenerativa, específicamente en la enfermedad de Parkinson. 44(11): 1815-1826.
Sidhu A, Laruelee M, Vernier P. Dopamine Receptors and Transporters: Function, Imaging and Clinical Implication. 2nd Ed USA: Marcel Dekker Inc; 2003, p 1-5.
Wieringen J, Booij J, Shalgunov V, Elsinga P, Michel M. Agonist high and low affinity states of dopamine D receptors: methods of detection and clinical implications. N-S Arch Pharmacol 2013; 386(2): 135-154.
Di Giovanni G, Esposito E, Di Matteo V. Role of serotonin in central dopamine dysfunction. CNS Neurosci Ther 2010; 16(3): 179-194.
Nichols C. Serotonin, Encyclopedia of the Neurological Sciences, Second edition, 2014; 145-147. 2A 2C
Berg KA, Harvey JA, Spampinato U, Clarke WP. Physiological and therapeutic relevance of constitutive activity of 5-HT and 5-HT receptors for the treatment of depression. Prog Brain Res 2008; 172:287-305.
Volkow ND, Wang GJ, Fowler JS, Tomasi D, Telang F. Addiction: beyond dopamine reward circuitry. Proc Natl Acad Sci USA 2011;108(37):15037-15042.
Rodman MJ. Cómo y Porqué de la Farmacoterapia. 17th Ed. San Bernardino (México DF): Ediciones P.L.M. S.A; 1981, p 33.
Goodman A, Rall TW, Nies AS, Taylor P. Las Bases Farmacológicas de la Terapéutica. 8th Ed. México: Editorial Médica Panamericana; 1991, p 458-461.
Angel J, Andujar S, Migliore de Angel B, Charris J, Israel A, Suárez-Roca H, López S, Garrido M, Cabrera E, Visbal G, Rosales C, Suvire F, Enriz R. Synthesis, dopaminergic profile and molecular dynamics calculations of N-Aralkyl substituted 2- aminoindans. Bioorg Med Chem 2008; 16: 3233-3244.
Brichta L, Greengard P, Flajolet M. Advances in the pharmacological treatment of Parkinson’s disease: targeting neurotransmitter systems. Trends Neurosci 2013; 36(9): 543-554.
Aono M, Iga J, Ueno S, Agawa M, Tsuda T, Ohmori T. Neuropsychological and psychiatric assessments following bilateral deep brain simulation of the subthalamic nucleus in Japanese patients with Parkinson’s disease. J Clin Neurosci 2014; 21:1595-1598.
World Health Organization. Neurological disorders: public health challenges. 2006; Consultado en: [En línea] 2006 [Citado el 14 de enero de 2014] disponible en: https://www.who.int/mental_health/neurology/neurodiso/en/.
Hoehn M. The natural history of Parkinson’s disease in the pre-levodopa and postlevodopa eras. Neurol Clin 1992; 10: 331-339.
Angel J. Diseño y Síntesis de Aminotetralinas y Aminoindanos Rígidos con Posible Actividad Dopaminérgica. [Tesis Doctoral] Caracas: Univ. Central de Venezuela; 1993.
Ramírez MM. Síntesis de los derivados de: lilolidina, acenafteno y quinolinas como noveles compuestos con posible actividad dopaminérgica central [Tesis Doctoral] Zulia: Univ. del Zulia; 2014.
Orfila L, Angel J, Torres M, Barbella Y, Israel A. Evidence for a dopaminergic involvement in the renal action of centrally administered JA116a, a novel compound with possible dopaminergic activity in rats. J Pharm Pharmacol 1994; 46: 397-399.
Pérez J, Pérez Z, Angel J, Charris J, Torres M, Israel A. Synthesis of (+)-amino- 6,7,8,8ª-tetrahidroacenaphtene with possible central dopaminergic activity. B Chim Farma 1995; 134: 339-332.
Charris J, Pérez J, Duerto de Pérez Z, Ayala C, Stern A, Migliore B, Michelena E, Caldera J, Compagnone R, Avila D, Rodríguez L, Angel J. Synthesis of 1-amino- 6,7,8,8ª-tetrahydroacenaphthenes and its effect on the inhibition of the MAO enzyme at the brain cortex and liver level. Die Pharm 2000; 55: 62-64.
Cannon J, Long J, Bhatnagar R. Future directions in dopaminergic nervous system and dopaminergic agonists. J Med Chem 1981; 24(10): 1113-1118.
Osamu I, Mitsuru T, Chieko M, Kazunaga F. Studies on absorption, biotransformation and excretion of drug. II. Metabolism of 2-Indamine. Chem Pharm Bull 1972; 20(4): 734-740.
Costall B, Naylor RJ, Cannon J G, Lee TJ. Differentiation of the dopamine mechanisms mediating stereotyped behavior and hyperactivity in the nucleus accumbens and caudate-putamen. J Pharm Pharmacol 1977; 29(6): 337-342.
Snedecord G, Cochnar W. Statical Methods. Seventh Ed. Iowa State University Press, Amer. 1982. Ser. Printing.
Creese L, Iversen SD. The pharmacological and anatomical substrates of the amphetamine response in the rat. Brain Res 1975; 83: 419-436.
Chartoff EH, Marck BT, Matsumoto AM, Dorsa DM, Palmiter RD. Induction of stereotypy in dopamine-deficient mice requires striatal D1 receptor activation. Proc Natl Acad Sci USA 2001; 98(18): 10451-10456.
Israel A, Torres M, Cierco M, Barbella Y. Further evidence for a dopaminergic involvement in the renal action of centrally administered atrial natriuretic peptide in rats. Brain Res Bull 1991; 27: 739-742.
Murphy S. Comparative assessment of efficacy and withdrawal symptoms after 6 and 12 weeks treatment with diazepam or buspirone. Br J Psychiatry 1985; 154: 529-534.
Perdomo LE, Balza K, Acurero GA, Angel LB, Dabian AS, Faría AR, Linero AR, Zapata MV, Vera M, Migliore de Angel B, Suárez Roca H, Israel A, Charris J, López SE, Ramírez MM, Angel JE. Design, synthesis and preliminary pharmacologic evaluation of 2 naminoindane quinoline analogs as dopaminergic agents. Der Pharm Chem 2015; 7(5): 130-135.
Ferrer RE, Urdaneta NC, Porta N, Rodríguez LCh, Rosales CC, Espinoza GA, Angel LB, Balza K, Perdomo LE, Faría AR, Dabian AS, Zapata MV, Linero AR, Acurero GA, Israel A, Garrido MR, Suárez Roca H, Migliore B, López S E, Charris J, Ramírez MM, Angel JE. Novedosos agentes do- paminérgicos centrales derivados del 2-aminoindano- 4,7 disustituido atípico. Síntesis y perfil farmacológico central. Invest Clin 2015; 56(2): 137-154.
Angel LB, Balza K, Perdomo LE, Dabian AS, Faría AR, Linero AR, Migliore B, Suárez-Roca H, Charris J, Israel A, Ramírez MM, Angel JE. Síntesis y evaluación farmacológica preliminar de nuevos compuestos quinolínicos con actividad anti corea de huntington. Rev Fac Farm 2015; 78 (1-2): 94-100.
Andujar S, Garibotto F, Migliore de Angel B, Angel Guío J, Charris J, Enriz, R. Molecular recognition and binding mechanism of Naralkyl substituted 2 aminoindans to Lucas G, De Deurwaerdère P, Caccia S, Spampinato U. The effect of serotonergic agents on haloperidol induced striatal dopamine release in vivo: opposite role of 5-HT(2A) and 5-HT(2C) receptor subtypes and significance of the haloperidol dose used. Neuropharmacology 2000;39(6):1053-1963.
Simola N, Morelli M, Carta AR. The 6-hydroxydopamine model of Parkinson’s disease. Neurotox Res 2007; 1:151-167.
Thoenen H, Tranzer JP. Chemical sympathectomy by selective destruction of adrenergic nerve endings with 6-Hydroxydopamine. N-S Arch Ex Path Ph 1968; 261: 271-288.
Jeon B, Jackson-Lewis SV, Burke RE. 6-Hydroxydopamine lesion of the rat substantia nigra: time course and morphology of cell death. Neurodegeneration 1995; 4:131-137.
Ungerstedt. U. 6-Hydroxy-dopamine induced degeneration of central monoamine neurons. Eur J Pharmacol 1968; 5: 107-110.
Meltzer HY. Serotonergic mechanisms as targets for existing and novel antipsychotics. Curr Antipsy Hand Exp Pharmacol 2012; 212: 87-124.
Ushijima I, Carino M, Horita A. Involvement of D1 and D2 dopamine systems in the behavioral effects of cocaine in rats. Pharma-2 the dopamine Dreceptor. A theoretical col Biochem Behav 1995; 52: 737-741. study. J Argent Chem Soc 2006; 94:1-11. 35.
Angel J, Santiago A, Rossi R, Migliore B, Barolo S, Andujar S, Hernández V, Rosa-D1 44. Molloy AG, Waddington JL. Dopaminergic behavior stereospecifically promoted by the agonist R-SK & F38393 and selectively les C, Charris J E, Suarez-Roca H, Israel blocked by the D antagonist SCH 23390.
A, Ramírez MM, Ortega J, Herrera Cano N, Enriz RD. Synthesis and preliminary pharmacological evaluation of methoxilated indoles with possible dopaminergic central action. Lat Am J Pharm 2011; 30 (10): 1934-1942.
Seeger TF, Seymour PA, Schmidt AW, Zorn SH, Schulz DW, Lebel LA, McLean S, Guanowsky V, Howard HR, Lowe JA. Ziprasidone (CP-88,059): A new antipsychotic with combined dopamine and serotonin receptor antagonist activity. J Pharmacol Exp Ther 1995; 275: 101-113.
Psychopharmacology 1984; 82(4): 409-410.
Nichols DE. The development of novel dopamine agonists in: Kaiser C, Kebabian J W. (eds) Dopamine Receptors ACS Symposium Ser. 224. Cap 9 Washington, DC 1983; 201-218.