Biocompatibilidad y toxicidad de nanopartículas de dióxido de titanio en la cavidad oral: Revisión sistemática. / Biocompatibility and nanotoxicology of titanium dioxide in the oral cavity: Systematic review.
Resumen
Resumen.
El presente artículo tiene como propósito analizar el impacto biológico y la toxicidad de las nanopartículas (NPs) de dióxido de titanio (TiO2 ) en la producción de especies reactivas de oxígeno así como inducción de estrés oxidativo, a través de una revisión sistemática de la bibliografía publicada hasta el momento sobre la biocompatibilidad de las NPs en contacto con células orales. Los datos disponibles sobre las NPs de TiO2 fueron recopilados de la base de datos electrónica PubMed, ScienceDirect y otras fuentes, de acuerdo con recomendaciones PRISMA para revisiones sistemáticas. En el análisis cualitativo de la información publicada sobre la citotoxicidad en células orales, se ha observado un ligero aumento en el número de células metabólicamente activas al estar en contacto con las NPs de TiO2 ; sin embargo a ciertas dosis la viabilidad celular decrece de manera importante. Uno de los efectos negativos de las NPs de TiO2 es la inducción de producción de prostaglandina E2 en un estado proinflamatorio previo, lo que potenciaría el efecto inflamatorio ya existente. Por tal motivo, la aplicación biológica de estas NPs debe ser sujeta a estudios in vivo y metabolómicos, ya que es posible que los resultados de los experimentos in vitro no puedan ser extrapolados a un sistema in vivo debido a la tendencia a agregarse en el medio de cultivo empleado para dichas pruebas. Por lo tanto, aunque puede clasificarse como un material con citotoxidad ligera o incluso biocompatible, no puede ser considerado complemente inocuo.
Abstract.
The aim of the present review article was to analyze the biological impact and toxicology of titanium dioxide nanoparticles (TiO2 NPs) to determine their cytotoxicity, reactive oxygen species production as well as induction of oxidative stress through a systematic review of the literature published so far about the biocompatibility of TiO2 NPs in contact with oral cells. Available data on nanoparticles (NPs) were collected from the PubMed and Science Direct electronic databases, and other sources according to PRISMA recommendations for systematic reviews. In the qualitative analysis of published data on cytotoxicity in oral cells, a slight increase in the number of metabolically active cells has been observed when the TiO2 NPs are in contact with oral cells; however, at certain doses cellular viability decreases significantly. One of the negative effects of NPs is the induction of prostaglandin E2 production in a previous pro-inflammatory state, which could increase the existing inflammatory effect. Therefore, the biological application of these nanoparticles must be performed both in vivo and metabolomic studies, since it is possible that the results of the in vitro experiments cannot be extrapolated to an in vivo system, since it been observed that the particles tend to aggregated among them, in the culture medium, used for such as tests. Therefore, although it can be considered a material with light or even biocompatible cytotoxicity, it must not be considered completely harmless.
Descargas
Citas
Uskokovic V. Entering the era of nanoscience: time to be so small. J Biomed Nanotechnol 2013; 9: 1441–1470.
Olenin AY, Lisichkin G V. Metal nanoparticles in condensed media: preparation and the bulk and surface structural dynamics. Russ Chem Rev 2011; 80: 605–630.
Sayes CM, Wahi R, Kurian PA, Liu Y, West JL, Ausman KD, Warheit DB, Colvin VL. Correlating nanoscale titania structure with toxicity: a cytotoxicity and inflammatory response study with human dermal fibroblasts and human lung epithelial cells. Toxicol Sci 2006; 92: 174–185.
Xue C, Wu J, Lan F, Liu W, Yang X, Zeng F, Xu H. Nano titanium dioxide induces the generation of ROS and potential damage in HaCaT cells under UVA irradiation. J Nanosci Nanotechnol 2010; 10: 8500–8507.
Weir A, Westerhoff P, Fabricius L, Hristovski K, Von Goetz N. Titanium dioxide nanoparticles in food and personal care products. Environ Sci Technol 2012; 46: 2242–2250.
Yang P, Gai S, Lin J. Functionalized mesoporous silica materials for controlled drug delivery. Chem Soc Rev 2012; 41: 3679–3698.
Rosenholm JM, Meinander A, Peuhu E, Niemi R, Eriksson JE, Sahlgren C, Lindén M. Targeting of porous hybrid silica nanoparticles to cancer cells. ACS Nano 2008; 3: 197–206.
Choi Y-E, Kwak J-W, Park JW. Nanotechnology for early cancer detection. Sensors 2010; 10: 428–455.
Youns M, D Hoheisel J, Efferth T. Therapeutic and diagnostic applications of nanoparticles. Curr Drug Targets 2011; 12: 357–365.
Zhang L, Gu FX, Chan JM, Wang AZ, Langer RS, Farokhzad OC. Nanoparticles in medicine: therapeutic applications and developments. Clin Pharmacol Ther 2008; 83: 761–769.
Szaciłowski K, Macyk W, Drzewiecka-Matuszek A, Brindell M, Stochel G. Bioinorganic photochemistry: frontiers and mechanisms. Chem Rev 2005; 105: 2647–2694.
Sul Y-T. Electrochemical growth behavior, surface properties, and enhanced in vivo bone response of Ti O2 nanotubes on microstructured surfaces of blasted, screwshaped titanium implants. Int J Nanomedicine 2010; 5: 87.
Patri A, Umbreit T, Zheng J, Nagashima K, Goering P, Francke-Carroll S, Gordon E, Weaver J, Miller T, Sadrieh N, McNeil S, Stratmeyer M. Energy dispersive X-ray analysis of titanium dioxide nanoparticle distribution after intravenous and subcutaneous injection in mice. J Appl Toxicol 2009; 29: 662–672.
Wiesenthal A, Hunter L, Wang S, Wickliffe J, Wilkerson M. Nanoparticles: small and mighty. Int J Dermatol 2011; 50: 247–254.
Montazer M, Behzadnia A, Pakdel E, Rahimi MK, Moghadam MB. Photo induced silver on nano titanium dioxide as an enhanced antimicrobial agent for wool. J Photochem Photobiol B Biol 2011; 103: 207–214.
Lee KP, Trochimowicz HJ, Reinhardt CF. Pulmonary response of rats exposed to titanium dioxide (TiO2 ) by inhalation for two years. Toxicol Appl Pharmacol 1985; 79: 179–192.
IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Cobalt in hard metals and cobalt sulfate, gallium arsenide, indium phosphide and vanadium pentoxide. IARC Monogr Eval Carcinog risks to humans 2006; 86: 1–9.
Thurn KT, Arora H, Paunesku T, Wu A, Brown EMB, Doty C, Kremer J, Woloschak G. Endocytosis of titanium dioxide nanoparticles in prostate cancer PC-3M cells. Nanomedicine 2011; 7: 123–130.
Oberdorster G. Significance of particle parameters in the evaluation of exposuredose-response relationships of inhaled particles. Inhal Toxicol 1996; 8: 73–89.
Filipe P, Silva JN, Silva R, De Castro JLC, Gomes MM, Alves LC, Santus R, Pinheiro T. Stratum corneum is an effective barrier to TiO2 and ZnO nanoparticle percutaneous absorption. Skin Pharmacol Physiol 2009; 22: 266–275.
Jawad H, Boccaccini AR, Ali NN, Harding SE. Assessment of cellular toxicity of TiO2 nanoparticles for cardiac tissue engineering applications. Nanotoxicology 2011; 5: 372–380.
Li S-Q, Zhu R-R, Zhu H, Xue M, Sun X-Y, Yao S-D, Wang SL. Nanotoxicity of TiO (2) nanoparticles to erythrocyte in vitro. Food Chem Toxicol 2008; 46: 3626–3631.
Cho W-S, Duffin R, Bradley M, Megson IL, MacNee W, Lee JK, Jeong J, Donaldson K. Predictive value of in vitro assays depends on the mechanism of toxicity of metal oxide nanoparticles. Part Fibre Toxicol 2013; 10: 55.
Jin C-Y, Zhu B-S, Wang X-F, Lu Q-H. Cytotoxicity of titanium dioxide nanoparticles in mouse fibroblast cells. Chem Res Toxicol 2008; 21: 1871–1877.
García-Contreras R, Argueta-Figueroa L, Mejía-Rubalcava C, Jiménez-Martínez R, Cuevas-Guajardo S, Sánchez-Reyna PA, Mendieta-Zeron H. Perspectives for the use of silver nanoparticles in dental practice. Int Dent J 2011; 61: 297–301.
Elsaka SE, Hamouda IM, Swain M V. Titanium dioxide nanoparticles addition to a conventional glass-ionomer restorative: influence on physical and antibacterial properties. J Dent 2011; 39: 589–598.
Moher D, Liberati A, Tetzlaff J, Altman DG, PRISMA Group. Preferred reporting items for systematic reviews and metaanalyses: the PRISMA statement. PLoS Med 2009; 6: e1000097.
Chen X, Mao SS. Synthesis of titanium dioxide (TiO2) nanomaterials. J Nanosci Nanotechnol 2006; 6: 906–925.
Sugimoto T, Zhou X, Muramatsu A. Synthesis of uniform anatase TiO2 nanoparticles by gel–sol method: 3. Formation process and size control. J Colloid Interface Sci 2003; 259: 43–52.
Sugimoto T, Zhou X. Synthesis of uniform anatase TiO2 nanoparticles by the Gel–Sol method: 2. adsorption of OH− ions to Ti (OH) 4 gel and TiO2 particles. J Colloid Interface Sci 2002; 252: 347–353.
Sugimoto T, Okada K, Itoh H. Synthetic of uniform spindle-type titania particles by the gel–sol method. J Colloid Interface Sci 1997; 193: 140-143.
Sugimoto T, Zhou X, Muramatsu A. Synthesis of uniform anatase TiO2 nanoparticles by gel–sol method: 4. Shape control. J Colloid Interface Sci 2003; 259: 53–61.
Sugimoto T, Zhou X, Muramatsu A. Synthesis of uniform anatase TiO2 nanoparticles by gel–sol method: 1. Solution chemistry of Ti (OH) n (4− n)+ complexes. J Colloid Interface Sci 2002; 252: 339–346.
Su C, Hong B-Y, Tseng C-M. Sol–gel preparation and photocatalysis of titanium dioxide. Catal Today 2004; 96: 119–126.
Wetchakun N, Phanichphant S. Effect of temperature on the degree of anatase–rutile transformation in titanium dioxide nanoparticles synthesized by the modified sol–gel method. Curr Appl Phys 2008; 8: 343–346.
Do Kim K, Kim SH, Kim HT. Applying the Taguchi method to the optimization for the synthesis of TiO2 nanoparticles by hydrolysis of TEOT in micelles. Colloids Surfaces A Physicochem Eng Asp 2005; 254: 99–105.
Lin J, Lin Y, Liu P, Meziani MJ, Allard LF, Sun Y-P. Hot-fluid annealing for crystalline titanium dioxide nanoparticles in stable suspension. J Am Chem Soc 2002; 124: 11514–11518.
Zhang D, Qi L, Ma J, Cheng H. Formation of crystalline nanosized titania in reverse micelles at room temperature. J Mater Chem. 2002; 12: 3677–3680.
Lim KT, Hwang HS, Ryoo W, Johnston KP. Synthesis of TiO2 nanoparticles utilizing hydrated reverse micelles in CO2 . Langmuir 2004; 20: 2466–2471.
Li Y, Lee N-H, Hwang D-S, Song JS, Lee EG, Kim S-J. Synthesis and characterization of nano titania powder with high photoactivity for gas-phase photo-oxidation of benzene from TiOCl2 aqueous solution at low temperatures. Langmuir 2004; 20: 10838–10844.
Zane A, Zuo R, Villamena FA, Rockenbauer A, Foushee AMD, Flores K, Dutta PK, Nagy A. Biocompatibility and antibacterial activity of nitrogen-doped titanium dioxide nanoparticles for use in dental resin formulations. Int J Nanomedicine 2016; 11: 6459.
Rossi S, Tirri T, Paldan H, Kuntsi‐Vaattovaara H, Tulamo R, Närhi T. Peri‐implant tissue response to TiO2 surface modified implants. Clin Oral Implants Res 2008; 19: 348–355.
Teubl BJ, Schimpel C, Leitinger G, Bauer B, Fröhlich E, Zimmer A, Roblegg E. Interactions between nano-TiO2 and the oral cavity: Impact of nanomaterial surface hydrophilicity/hydrophobicity. J Hazard Mater 2015; 286: 298–305.
Garcia-Contreras R, Scougall-Vilchis RJ, Contreras-Bulnes R, Kanda Y, Nakajima H, Sakagami H. Induction of prostaglandin E2 production by TiO2 nanoparticles in human gingival fibroblast. In Vivo 2014; 222: 217–222.
Best M, Phillips G, Fowler C, Rowland J, Elsom J. Characterisation and cytotoxic screening of metal oxide nanoparticles putative of interest to oral healthcare formulations in non-keratinised human oral mucosa cells in vitro. Toxicol in Vitro 2015; 30: 402-411.
Demetrescu I, Pirvu C, Mitran V. Effect of nano-topographical features of Ti/TiO2 electrode surface on cell response and electrochemical stability in artificial saliva. Bioelectrochemistry 2010; 79: 122–129.
Ma Q, Wang W, Chu P. K, Mei S, Ji K, Jin, L, Zhang Y. Concentration-and time-dependent response of human gingival fibroblasts to fibroblast growth factor 2 immobilized on titanium dental implants. Int J Nanomedicine 2012; 7: 1965-1975.
Giovanni M, Tay CY, Setyawati MI, Xie J, Ong CN, Fan R, Yue J, Zhang L, Leong DT. Toxicity profiling of water contextual zinc oxide, silver, and titanium dioxide nanoparticles in human oral and gastrointestinal cell systems. Environ Toxicol 2015; 30: 1459–1469.
Garcia-Contreras R, Scougall-Vilchis RJ, Contreras-Bulnes R, Ando Y, Kanda Y, Hibino Y, Nakajima H, Sakagami H. Effects of TiO2 nanoparticles on cytotoxic action of chemotherapeutic drugs against a human oral squamous cell carcinoma cell line. In Vivo 2014; 28: 209–215.
Garcia-Contreras R, Scougall-Vilchis RJ, Contreras-Bulnes R, Kanda Y, Nakajima H, Sakagami H. Effects of TiO2 nano glass ionomer cements against normal and cancer oral cells. In Vivo 2014; 28; 895-907.
Samiei M, Ghasemi N, Aghazadeh M, Divband B, Akbarzadeh F. Biocompatibility of mineral trioxide aggregate with TiO2 nanoparticles on human gingival fibroblasts. J Clin Exp Dent 2017; 9: 182–185.
Kroll A, Pillukat MH, Hahn D, Schnekenburger J. Interference of engineered nanoparticles with in vitro toxicity assays. Arch Toxicol 2012; 86: 1123-1136.
Garcia-Contreras R, Sugimoto M, Umemura N, Kaneko M, Hatakeyama Y, Soga T, Tomita M, Scougall-Vilchis RJ, Contreras-Bulnes R, Nakajima H. Alteration of metabolomic profiles by titanium dioxide nanoparticles in human gingivitis model. Biomaterials 2015; 57: 33–40.
Teubl B, Leitinger G, Schneider M, Lehr CM, Fröhlich E, Zimmer A, Roblegg E. The buccal mucosa as a route for TiO2 nanoparticle uptake. Nanotoxicol 2015; 9: 253-261.
Mano SS, Kanehira K, Taniguchi A. Comparison of cellular uptake and inflammatory response via toll-like receptor 4 to lipopolysaccharide and titanium dioxide nanoparticles. Int J Mol Sci 2013; 14: 13154–13170.
Beckonert O, Keun HC, Ebbels TMD, Bundy J, Holmes E, Lindon JC, Nicholson JK. Metabolic profiling, metabolomic and metabonomic procedures for NMR spectroscopy of urine, plasma, serum and tissue extracts. Nat Protoc 2007; 2: 2692.