Effect of the addition of macronutrients on the treatability of an effluent of a vegetable processing industry

  • Sedolfo Carrasquero Universidad del Zulia
  • Adriana González
  • Gilberto Colina
  • Altamira Díaz
Keywords: Food industry, macronutrients, organic matter, sequential loading reactor, biological treatment

Abstract

The food industry is one of the productive sectors that have the greatest impact on the environment, either by its processing processes or by the different products that
come to market. The objective of this research was to evaluate the effect of the addition of nitrogen and phosphorus on the treatability of the effluents of the processing of vegetables in a reactor by sequential load in laboratory scale. The effluent was collected in a plant located in the municipality Jesús Enrique Lossada, Zulia State, Venezuela. The tests were carried out in two reactors per sequential load operated with an aerobic operational sequence, operated in parallel, one fed with the effluent from the processing plant without addition of macronutrients and the other with addition of nitrogen and phosphorus from an external source. Prior to reactor loading by sequential loading, a neutralization pretreatment was performed adjusting the pH of the water in the range of 6.5 to 8.5 with 6.0 N NaOH. From the characterization it was obtained that the values of pH, DQOT, BOD5, 20 and SST were found outside the limits established by the Venezuelan regulations for discharge into bodies of water. COD removal values of 79.6 and 78.3% were obtained for treatments without addition and addition of macronutrients, respectively, with no statistically significant differences between these removal percentages. The addition of macronutrients as an operational strategy in the reactor by sequential loading did not improve the removal of organic matter, i.e. microbial biomass was able to remove organic matter from wastewater despite nutritional limitations.

Downloads

Download data is not yet available.

Author Biography

Sedolfo Carrasquero, Universidad del Zulia

Departamento de Ingeniería Sanitaria y Ambiental (DISA). Escuela de Ingeniería Civil, Facultad de Ingeniería.

References

Abril, G. yFrankignoulle, M. (2001). Nitrogen-alkalinity interactions in the highly polluted Scheldt basin (Belgium).Water Research, 35(3):844–850.
APHA, AWWA y WCF.(2005). Standard methods for examination of water and wastewater.21th edition. Washington D.C.: American Public Health Association. p.p. 1023.
Arellano, R. (2005). Evaluación de la proliferación de bulking en sistemas de tratamiento de lodos activos. Trabajo especial de grado para optar título de Ingeniero Civil. Universidad del Bio-Bio, Concepción, Chile.
Blanco, A., Tovar, J. y Fernández, M. (2004). Caracterización nutricional de los carbohidratos y composición centesimal de raíces y tubérculos tropicales cocidos en Costa Rica. Archivos Latinoamericanos de Nutrición. 54(3):322-327.
Contreras, E., Bertola, N., Zaritzky, N. (2001). The application of different techniques to determine activatedsludge kinetic parameters in a food industry wastewater. Water SA, 27(2):169-176.
Decreto 883 (1995). Normas para la Clasificación y el control de la calidad de los cuerpos de agua y de los vertidos líquidos. Decreto 883. Gaceta No. 5021. 18-12-1995. Venezuela.
Díaz, A, Ferrer, P, Mazzolo, E, Ferrer, M, Rincón, N y Colina, G. (2010). Remoción simultánea de nitrógeno, DQO y fenol en un efluente sintético utilizando reactores SBR. Revista Técnica de la Facultad de Ingeniería Universidad del Zulia, 33(3):205-21
Fresenius, W., Schneider, W., Böhnke, B. yPöppinghaus, K. (1989).Wastewater technology: origin, collection, treatment and analysis of wastewater. Nueva York: Springer-Verlag
Fuentes, J. (1999). El Suelo y sus fertilizantes. Editorial S.A. Mundi-Prensa.España.
Garzón M. (2005). Mecanismos no convencionales de transformación y remoción del nitrógeno en sistemas de tratamiento de aguas residuales. Ingeniería Hidraúlica en México, 20(4):137-149.
Gürtekin, E. (2011). Effect of influent c/p ratio on biological phosphorus removal in anaerobic/anoxic sequencing batch reactor.International journal of academic research, 3(2):89-92.
Kargi, F.; Uygur, A. (2003).Nutrient removal performance of a five-step sequencing batch reactor as a function of wastewater composition. Process Biochemistry, 38:1039-1045.
Lefebvre O., N. Vasudevan, M. Torrijos, K. Thanasekaran y R. Moletta. (2005). Halophilic biological treatment of tannery soak liquor in a sequencing batch reactor.Water Research, 39:1471–1480.
Louzeiro, N.,Mavinic, D., Oldham, W., Meisen, A y Gardner, I. (2002). Methanol induced biological nutrient removal kinetics in a full scale se queen ting back reactor. Water Research 36:2721-2732.
Metcalf y Eddy. (2003). Ingeniería de Aguas Residuales. Tratamiento, vertido y reutilización. Cuarta edición. Editorial McGraw-Hill. Madrid, España.
Minguez, M., Pérez, A. y Hormero D. (2005). Pigmentos carotenoides en frutas y vegetales, mucho más que simples colorantes naturales. Grupo de Química y Bioquímica de pigmentos. Departamento de Biotecnología de alimentos. Instituto de la grasa. Sevilla, España, p 7.
Oliva, L., Zaiat, M. yForesti, E. (1995). Anaerobic reactors for food processing wastewater treatment: Established technology and new developments. Water Science and Technology, 32(12): 157-163.
Organización Mundial de la Salud (OMS). (1993). Assessment of sources of air, water, and land pollution, World health organization, Geneva, Switzerland.
Pascual, A. (2008). Gestión y mantenimiento de depuradoras en industrias agroalimentarias. Curso de formación específica para técnicos de la industria agroalimentaria. Centro tecnológico AINIA. España
Pérez, A., Torres, P. y Silva, J. (2009). Tratamiento anaerobio de las aguas residuales del proceso de extracción de almidón de yuca. Optimización de variables ambientales y operacionales. Revista DYNA, 139-148.
Pire, M., Palmero, J., Araujo, I. y Díaz, A. (2010). Tratabilidad del efluente de una tenería con presencia de cromo usando un reactor por carga secuencial. Revista Científica, 20(4):390-398.
Ramalho, R. (1993). Tratamiento de Aguas Residuales. Editorial Reverté, Barcelona.
Robinson, D. (1991). Bioquímica y valor nutritivo de los alimentos. Editorial Acribia. Madrid, España. 530 p.
Roy, D., Hassan, K. y Boopathy, R. (2010). Effect of carbon to nitrogen (C:N) ratio on nitrogen removal from shrimp production waste water using sequencing batch reactor. Journal of Industrial Microbiologyand Biotechnology, 37:1105–1110
Xu, Y., Chen, T., Cui, F. y Shi, W. (2006).Effect of reused alum-humic-flocs on coagulation performance and floc characteristics formed by aluminum salt coagulants in humic-acid water. Chemical Engineering Journal, 287:225–232.
Published
2021-02-09
How to Cite
Carrasquero, S., González, A., Colina, G., & Díaz, A. (2021). Effect of the addition of macronutrients on the treatability of an effluent of a vegetable processing industry. Impacto Científico, 13(1), 91-103. Retrieved from https://produccioncientificaluz.org/index.php/impacto/article/view/35245