The Ramsey numbers with components H-good and simultaneous sequences
Abstract
Given two graphs $G$ and $H$ do not empty. The number of Ramsey $R(G,H)$ is defined as the minor positive integer $n$, such that for some graph $F$ wich containing a monochromatic copy $G^{'}$ isomorphic to $G$ or the complement of $F$, contains a monochromatic copy $H^{'}$ isomorphic to $H$. In this work, we present a method based on the combinatorial theory, and the definition of linear forest, to determine a set $W$ of sequences with $m+1$ elements of size $m$ each one, with each sequence $s_{i}$ the sides of the minor complete graphs $K_{n}=F\cup\overline{F}$ are colored. In second place, the demonstration of the theorem wich result of the combination of the graphs: wheel $W_{n}$ for $n\geq 5$ and diamond is done. In this case, we prove that the Ramsey number is $R(G;H)=n+1$, furthermore we prove the symmetry and $k$-baricentricity monochromatic of the set of sequences.
References
Chen, Y.; Zhang, Y.; and Zhang, K. The Ramsey number paths, versus wheels. Discret Mathematics. 290 (2005), 85–87.
Otero, J. Un método matricial para el cálculo de las constantes de Davenport y Olson k-baricéntricas. Tesis de Maestrı́a. Universidad de Oriente. Venezuela. 2011
Otero, J; Salazar, J; and Villarroel, F. Representación de grafos divisores de cero para anillos. Divulgaciones Matemáticas. 19(2) (2018), 44–51.
Radziszowski, S. P.; and Xia, J. Paths, cycles and wheels in graphs without antitriangles. Australasion Journal of Combinatorics. 9 (1994), 221–232.
Surahmat and Baskoro, E.T. On the Ramsey number of path or star versus W 4 or W 5 . Proc. Twelfth Autraslasian Workshop on Combinatorial Algorithms, Bandung, Indonesia. 14-17 (2001). 174–179.
Villaroel, F.; Figueroa, J.; Márquez, H. and Anselmi, A. Un método algorı́tmico para el cálculo del número baricéntrico de Ramsey para el grafo estrella. Bol.soc. Paran. Mat.3s. 36 (2018) 169–183.
Villarroel, F. La constante de olson k-baricéntrica y un teorema inverso de Erds-Ginzburg-Ziv. Tesis Doctoral. Universidad Central de Venezuela. 2008.
Zhou, H. L. The Ramsey number of an odd cycles with respect to a wheel in chinese. Journal of Mathematics, Shuxu Zazhi. 15 (1995), 119–120.