Effect of different fertilizer sources on the yield and fiber quality of Musa textilis ‘Tangongón’
Abstract
The fertilization of abacá through the application of organic and chemical fertilizers influences fiber production, but its combined effect still requires evaluation. This research evaluated the effect of different fertilizer sources on the fiber production of the ‘Tangongón’ abacá in Santo Domingo de los Tsáchilas, Ecuador, to determine the most efficient alternative for improving abacá fiber yield and quality. A randomized complete block design with a 2×3 factorial arrangement and four replications was used. Two soil fertilizers and three foliar fertilizer conditions were evaluated, and growth, yield, and fiber quality variables were analyzed. Fertibanano without foliar supplementation stood out for achieving the highest fiber yield (1.25 t.ha-1.year-1) and for producing the highest proportion of higher-quality fiber (2.nd quality = 0.307 kg.pseudostem-1). Furthermore, it generated the highest averages of suckers.plant-1 (2.13) and shoots.plant-1 (7.25). Although the combination of Ecoabonaza with Bayfolan promoted the greatest plant height (1.58 cm.month-1), and Fertibanano with humic acids showed the highest values in the number of leaves.plant-1 (0.85) and pseudostem circumference (2.59 cm), these treatments exhibited lower fiber yield and a lower proportion of second-quality fiber. It was concluded that nutritional management based on Fertibanano constitutes a nutritional strategy to optimize the yield and quality of abacá fiber.
Downloads
References
Araya-Gutiérrez, D., Monge, G. G., Jiménez-Quesada, K., Arias-Aguilar, D., & Cordero, R. Q. (2023). Abaca: a general review on its characteristics, productivity, and market in the world. Revista Facultad Nacional de Agronomía Medellín, 76(1), 10263-10273. https://doi.org/10.15446/rfnam.v76n1.101710
Arias Aguilar, D., Araya Salas, M., Esquivel Segura, E. & Jiménez Montero, M. (2024). Manual Técnico para la producción sostenible de abacá (Musa textilis Née) en Costa Rica. PROCOMER
Banco Central del Ecuador. (2023). Información Estadística Mensual: Nº 2054. Dirección Nacional de Síntesis Macroeconómica. Recuperado de https://repositorio.bce.ec/handle/32000/2322
Bande, M. M., Grenz, J., Asio, V. B., & Sauerborn, J. (2013). Fiber yield and quality of abaca (Musa textilis var. Laylay) grown under different shade conditions, water, and nutrient management. Industrial Crops and Products, 42, 70-77. https://doi.org/10.1016/j.indcrop.2012.05.009
Barbosa, C. F. C., Asunto, J. C., Koh, R. B. L., Santos, D. M. C., Zhang, D., Cao, E. P., & Galvez, L. C. (2023). Genome-wide SNP and indel discovery in Abaca (Musa textilis Née) and among other Musa spp. for Abaca genetic resources management. Current Issues in Molecular Biology, 45(7), 5776-5797. https://doi.org/10.3390/cimb45070365
Bongoloan Jr, R., & Dinopol, E. (2016). Response of Abaca (Musa textilis N.) to Vermicast Application. Journal on Agro-industrial Research and Development, 1(1), 7-10. https://journal.asscat.edu.ph/index.php/jaird/article/view/5
Bravo, S., Pazmiño, J. y Jácome, L. (2023). Efecto de abonos orgánicos en el rendimiento en abacá (Musa textilis) variedad Tangongón en tres densidades de siembra. Boletín Científico Ideas y Voces, 3(3), 1361-1372. https://ciciap.org/ideasvoces/index.php/BCIV/article/view/105/123
Castro, R. C. T. y Chávez, J. P. A. (2022). Evaluación de la fertilización inyectada en el cultivo de abacá (Musa textilis). Revista de Investigación Científica TSE DE, 5(3), 1-14. https://www.revista.tsachila.edu.ec/index.php/TSEDE/article/view/133
Franck, R. R. (Ed.). (2005). Bast and other plant fibres (Vol. 39). Crc Press.
Instituto Nacional de Meteorología e Hidrología (INAMHI). (2024). Boletín N° 07, Informes meteorológicos anuales de temperatura y precipitación. https://servicios.inamhi.gob.ec/clima1/
Jácome Gómez, L. R., Álava Rosado, A. M., y Arellano Cisneros, C. L. (2025). Efecto de la fertilización en la producción de abacá (Musa textilis Bungalanón). Boletín Científico Ideas Y Voces, 5(2), 159 – 170. https://doi.org/10.60100/bciv.v5i2.219
Karpinets, T. V., & Greenwood, D. J. (2024). Potassium dynamics. In Handbook of Processes and Modeling in the Soil-Plant System (pp. 525-559). CRC Press.
Macay-Anchundia, M. Ángel, Cobeña Loor, N. V., Balcázar Almeida, M. I., Ponce Hidalgo, E. J., & Mendoza Márquez, P. J. (2025). Efecto del fertilizante mineral en el rendimiento y calidad de la producción de Musa textilis. Revista Científica Multidisciplinar G-nerando, 6(1) 936 – 946. https://doi.org/10.60100/rcmg.v6i1.445
Mangmang, M., & Cozo, K. (2021). Growth response of abaca (Musa textilis Nee) in abandoned mine soil amended with oil palm residues. Southeastern Philippines Journal of Research and Development, 26(2), 23-46. https://doi.org/10.53899/spjrd.v26i2.158
Nardi, S., Schiavon, M., & Francioso, O. (2021). Chemical structure and biological activity of humic substances define their role as plant growth promoters. Molecules, 26(8), 2256. https://doi.org/10.3390/molecules26082256
Organización de las Naciones Unidas para la Alimentación y la Agricultura (FAO). (2004). Perspectivas a plazo medio de los productos básicos agrícolas: Proyecciones al año 2010. Food & Agriculture Org. https://www.fao.org/4/y5143s/y5143s00.htm#Contents
Pandey, N. (2018). Role of plant nutrients in plant growth and physiology. In Plant nutrients and abiotic stress tolerance (pp. 51-93). Singapore: Springer Singapore.
Philippine Bureau of Agriculture and Fisheries Standards (BAFS). (2019). Non-food crops – Abaca – Code of Good Agricultural Practices (GAP). Philippine National Standard PNS/BAFS 266:2019. https://philfida.da.gov.ph/images/Publications/PNS/PNS-Non-food-Abaca-GAP.pdf
Ramos, C. A., Saludo, K. E., & Corpuz, O. S. (2022). Growth Increment of Tissue Cultured Abaca Seedlings Applied with Conventional Fertilizer and Biostimulant. Asian Journal of Agricultural and Horticultural Research, 9(4), 37-48. https://doi.org/10.9734/ajahr/2022/v9i430155
Sardans, J., & Peñuelas, J. (2021). Potassium control of plant functions: Ecological and agricultural implications. Plants, 10(2), 419. https://doi.org/10.3390/plants10020419
Ullah, S., Akhter, Z., Palevicius, A., & Janusas, G. (2025). Review: Natural fiber-based biocomposites for potential advanced automotive applications. Journal of Engineered Fibers and Fabrics, 20, 1-25. https://doi.org/10.1177/15589250241311468
Unal, F., Avinc, O., & Yavas, A. (2020). Sustainable textile designs made from renewable, biodegradable sustainable natural abaca fibers. In Sustainability in the Textile and Apparel Industries: Sustainable Textiles, Clothing Design and Repurposing (pp. 1-30). Cham: Springer International Publishing.
Wei, X., Xie, B., Wan, C., Song, R., Zhong, W., Xin, S., & Song, K. (2024). Enhancing soil health and plant growth through microbial fertilizers: Mechanisms, benefits, and sustainable agricultural practices. Agronomy, 14(3), 609. https://doi.org/10.3390/agronomy14030609
Yap, K. L. P., Casinillo, L. F., Bales, M. C., & Baliña, F. T. (2024). Characterizing the profile and functions of abaca industry stakeholders: The case of the Philippines. Journal of Management, Economics, & Industrial Organization (JOMEINO), 8(2) 42-64. http://doi.org/10.31039/jomeino.2024.8.2.3
Copyright (c) 2025 Leonardo Rafael Jácome Gómez, Janeth Rocío Jácome Gómez, María Cristina Martínez Sotelo, Marco De La Cruz Chicaiza, Holger Froilán Chica Solórzano

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.














