Gums exudates of Prosopis spp. located in Ecuador: prebiotic potential in animal feed

  • Fernando Rincón-Acosta Carrera de Medicina Veterinaria. Escuela Superior Politécnica Agropecuaria de Manabí. Manuel Félix López, ESPAM-MFL, Campus Politécnico El Limón, vía Calceta-El Morro, Ecuador https://orcid.org/0000-0001-5670-1488
  • Ernesto Hurtado Carrera de Medicina Veterinaria. Escuela Superior Politécnica Agropecuaria de Manabí. Manuel Félix López, ESPAM-MFL, Campus Politécnico El Limón, vía Calceta-El Morro, Ecuador. https://orcid.org/0000-0003-2574-1289
  • Cesar Robalino-Briones Carrera de Medicina Veterinaria. Escuela Superior Politécnica Agropecuaria de Manabí. Manuel Félix López, ESPAM-MFL, Campus Politécnico El Limón, vía Calceta-El Morro, Ecuador. https://orcid.org/0009-0002-3898-2081
  • Paul Aguilar-Camba Carrera de Medicina Veterinaria. Escuela Superior Politécnica Agropecuaria de Manabí. Manuel Félix López, ESPAM-MFL, Campus Politécnico El Limón, vía Calceta-El Morro, Ecuador. https://orcid.org/0009-0008-2430-6078
Keywords: dietary fiber, hydrocolloids, animal production, alternative growth promoters

Abstract

Fiber-rich plant foods have been tested as prebiotics (adjuvant to the growth and activity of the gut microbiota) in animal production, due to their high inulin and fiber content, in order to reduce the use of antibiotics and microbial resistance. The gummy exudate produced by Acacia senegal is a source of nutritional fiber that has been tested as a prebiotic in animal feed. The objective of this study was to analyze the potential use of novel sources of Prosopis spp. gummy exudates as prebiotics in animals of zootechnical interest based on a systematic literature review in indexed journals of the use of gum-hydrocolloids as an alternative supplement in animal feed. The scientific articles reviewed show the benefits of using the gummy exudate of Acacia senegal as a prebiotic in the production of broilers, turkeys, rabbits, and pigs. The gums obtained from Prosopis spp. present physicochemical and nutritional characteristics analogous to those published for gum arabic. Therefore, based on the bibliographic reports consulted, the gummy exudate obtained from Prosopis spp trees located in Ecuador could present a nutritional profile with excellent fiber content, oligosaccharides, essential minerals, and phenolic compounds, which would enhance its use as a promising prebiotic in animal feed, improving the function of the intestinal barrier, favoring the growth of beneficial microbiota,  significantly reducing the populations of pathogenic bacteria, optimizing animal welfare and production.

Downloads

Download data is not yet available.

References

Abd-Razig, N.M., Sabahelkhier, M.K. & Idris, O.F. (2010). Effect of Gum Arabic (Acacia senegal, L. Willd) on lipid profile and performance of laying Hens. Journal of Applied Bioscience, 32, 2002–2007. https://elewa.org/JABS/2010/32/7.pdf
Abdalla, S.A., Abdel-Atti, K.A., Malik, H.E.E., Dousa, B.M. & Elamin K.M., (2015). Effect of Dietary Inclusion of Gum Arabic (Acacia senegal) on Performance and Blood Chemistry of Broiler Chicks. Global Journal of Animal Scientific Research, 3(2), 305-310. http://www.journals.wsrpublishing.com/index.php/gjasr/article/view/344
Al-Baadani, H. H., Al-Mufarrej, S. I., Al-Garadi, M. A., Alhidary, I. A., Al-Sagan, A. A. & Azzam, M.M. (2021). The use of gum Arabic as a natural prebiotic in animals: A review. Animal Feed Science and Technology, 274, 114894. https://www.sciencedirect.com/science/article/abs/pii/S0377840121000808
Al-Baadani, H.H.; Alhotan, R.A.; Al- Abdullatif, A.A.; Alhidary, I.A.; Alharthi, A.S.; Al-Mufarrej, S.I. & Azzam, M.M. (2022). The Effect of Gum Arabic Supplementation on Growth Performance, Blood Indicators, Immune Response, Cecal Microbiota, and the Duodenal Morphology of Broiler Chickens. Animals, 12, 2809, 1-16. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9597837/pdf/animals-12-02809.pdf
Al-Fadil, S., Mukhtar, M.A. & Tabidi, M.H. (2013). Response of broiler chicks to diets containing Gum Arabic as a natural prebiotic. Journal of Current Research in Science 1, 247–253. http://www.jcrs010.com/files/151_JCRS_20130614(2).pdf
Ali, B.H., Beegam, S., Al-Lawati, I., Waly, M.I., Al Za’abi, M. & Nemmar, A. (2013). Comparative efficacy of three brands of gum acacia on adenine-induced chronic renal failure in rats. Physiological Research 62, 47–56. https://www.biomed.cas.cz/physiolres/pdf/62/62_47.pdf
Ahmed, A.A., Musa, H.H., Fedail, J.S., Sifaldin, A.Z. & Musa, T.H. (2016). Gum Arabic suppressed diet induced obesity by alteration the expression of mRNA levels of genes involved in lipid metabolism in mouse liver. Bioactive Carbohydrates and Dietary Fiber, 7, 15–20. https://doi.org/10.1016/j.bcdf.2016.01.002
Amber, K., Abd El-Nabi, F.M., Morsy, W.A. & Shama, S.H.A. (2017). Gum Arabic as prebiotic in growing rabbit’s diet. Global Veterinaria, 19, 465–471. https://www.researchgate.net/publication/366958267_Gum_Arabic_as_Prebiotic_in_Growing_Rabbits_Diet
Babiker, R., Merghani, T.H., Elmusharaf, K., Badi, R.M., Lang, F. & Saeed, A.M. (2012). Effects of Gum Arabic ingestion on body mass index and body fat percentage in healthy adult females: two-arm randomized, placebo controlled, double blind trial. Nutrition Journal, 11, 1–7. https://doi.org/10.1186/1475-2891-11-111
Bayoumi, A.A., Mousa, M.A., Khosht, A.R., Salim, I.H., Shamseldeen, A.E., Arafa, A.S., El-deeb, M.A., Elkomy, H.M., & Mostafa, S.M. (2024). Effect of Dietary Inclusion of Gum Arabic (Acacia senegal) and Lactobacillus acidophilus or their Combination on Broiler Chickens. Journal of Desert and Environmental Agriculture, 4(2), 325-345. https://doi.org/10.21608/jdea.2024.293900.1053
Bosco, N.J. (2019). Some growth promoters already tried to replace antimicrobial growth promoter in weaned pig, according to a review. International Research Journal of Engineering and Technology, 6, 1741–1745. https://www.irjet.net/archives/V6/i4/IRJET-V6I4372.pdf
Burghardt, A. D., Brizuela, M., Mom, P., Albán, L. & Palacios, R. (2010) Análisis numérico de las especies de Prosopis L. (Fabaceae) de las costas de Perú y Ecuador Revista Peruana de Biología, 17(3), 317-323. https://revistasinvestigacion.unmsm.edu.pe/index.php/rpb/article/view/6/6
Clamens C., Rincón F., Sanabria L., Vera A. & León de Pinto G. (2000). Species widely disseminated in Venezuela which produce gum exudate. Food Hydrocolloids, 14(3), 253-257. https://doi.org/10.1016/S0268-005X(00)00004-7

El-Ratel, I.T., Ismail, R.F. & Fouda, S.F. (2019). Productive performance, carcass traits, lipid profile, antioxidants and immunity of growing rabbits treated with gum Arabic under Egyptian summer condition. Egyptian Journal of Nutrition and Feeds, 22, 143–154. https://ejnf.journals.ekb.eg/article_79436_69f39be98241bdc5a1c4460547d87c8d.pdf
Gibson, G.R., Hutkins, R. & Sanders, M.E. (2017). Expert consensus document: the International scientific Association for probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nature Reviews Gastroenterology & Hepatology, 14, 491–502. https://doi.org/10.1038/nrgastro.2017.75
Gultermirian, M.L., Corti, H.R., Pérez Chaia, A. & Apella, M.C. (2014). Fermentation of in vitro of a mixture of dietary fibers and cane molasses by the cecal microbiota: application on mineral absorption through the laying hens colonic epithelium. Animal Feed Science and Technology, 191, 76–82. https://doi.org/10.1016/j.anifeedsci.2014.01.019
Hu, Q., Gerhard, H., Upadhyaya, I., Venkitanarayanan, K., & Luo, Y. (2016). Antimicrobial eugenol nanoemulsion prepared by gum arabic and lecithin and evaluation of drying technologies. International Journal of Biological Macromolecules, 87, 130-40 .https://doi.org/10.1016/j.ijbiomac.2016.02.051
Kamal, E., Kaddam, L.A., Dahawi, M., Osman, M., Salih, M.A., Alagib, A. & Saeed, A. (2018). Gum arabic fibers decreased inflammatory markers and disease severity score among rheumatoid arthritis patients, phase II trial. International Journal of Rheumatology, 1, 1–6. https://doi.org/10.1155/2018/4197537
Khalid, S.A., Musa, A.M., Saeed, A.M., Abugroun, E.A., Ahmed, E.O.S., Ghalib, M.B., Elnima, E.I., Alkarib, S.Y., Abdelsalam, T.M., Abdelgader, A. & Phillips, G.O. (2014). Manipulating dietary fibre: Gum Arabic making friends of the colon and the kidney. Bioactive Carbohydrates and Dietary Fiber, 3, 71–76. https://doi.org/10.1016/j.bcdf.2014.01.005
Khan S, Chand N, Hafeez A. & Ahmad, N. (2022). Effect of gum arabic on overall growth performance, visceral and lymphoid organs along with intestinal histomorphology and selected pathogenic bacteria of broiler chickens. Journal Animal Health and Production, 10(1), 73-80. http://dx.doi.org/10.17582/journal.jahp/2022/10.1.73.80
López-Franco Y., Córdova-Moreno R. E., Goycoolea F. M., Valdez M., Juárez-Onofre J. & Lizardi-Mendoza J. (2012). Classification and physicochemical characterization of mesquite gum (Prosopis spp). Food Hydrocolloids, 26, 159-166. https://doi.org/10.1016/j.foodhyd.2011.05.006 López-Franco Y.L., Gooycolea F.M. & Lizardi-Mendoza J. (2015). Gum of Prosopis/Acacia Species. In: Ramawat, K., Mérillon, JM. (eds) Polysaccharides. Springer, Cham. 641–662. https://doi.org/10.1007/978-3-319-16298-0_14
McDougall, G. J. (2016). Phenolic-enriched foods: sources and processing for enhanced health benefits. Proceedings of the Nutrition Society, 76(2), 163–171. https://pubmed.ncbi.nlm.nih.gov/27804893/
Mohammadigheisar, M., Shirley, R.B., Barton, J., Welsher, A., Thiery, P. & Kiarie, E. (2019). Growth performance and gastrointestinal responses in heavy Tom turkeys fed antibiotic free corn soybean meal diets supplemented with multiple doses of a single strain Bacillus subtilis probiotic (DSM29784). Poultry Science, 98, 5541–5550. https://doi.org/10.3382/ps/pez305
Mudgil D. & Barak S, (2020). Mesquite gum (Prosopis gum): Structure, properties & applications - A review. International Journal of Biological Macromolecules, 159(15), 1094-1102. https://doi.org/10.1016/j.ijbiomac.2020.05.153
Oboh, G., Ademosun, A., Akinleye, M., Omojokun, O., Boligon, A. & Athayde, M. (2015). Starch composition, glycemic indices, phenolic constituents, and antioxidative and antidiabetic properties of some common tropical fruits. Journal Ethnic Foods, 2(1), 264-273. https://core.ac.uk/download/pdf/82500992.pdf
Phillips, A.O. & Phillips, G.O. (2011). Biofunctional behavior and health benefits of a specific gum Arabic. Food Hydrocolloids, 25, 165–169. https://doi.org/10.1016/j.foodhyd.2010.03.012
Park, I., Lee, Y., Goo, D., Zimmerman, N.P., Smith, A.H., Rehberger, T., & Lillehoj, H.S., (2020). The effects of dietary Bacillus subtilis supplementation, as an alternative to antibiotics, on growth performance, intestinal immunity and epithelial barrier integrity in broiler chickens infected with Eimeria maxima. Poultry Science, 99, 725–733. https://www.sciencedirect.com/science/article/pii/S0032579119579123?via %3Dihub
Rincón F., Clamens C., Beltrán O., Sanabria L. & Vásquez I (2020). Composición nutricional de la goma de semilla de Prosopis juliflora. Revista de la Facultad de Agronomía (LUZ), 37 (Supl1), 189-194. https://produccioncientificaluz.org/index.php/agronomia/article/view/33084
Rincón-Acosta, F., Félix López, M. E., Hurtado, E. A., Guerrero-Castillo, R. & Beltrán, O. (2023). Surfactant properties and emulsifying activity of the gum exudate of Prosopis juliflora (Sw.) DC, Revista de la Facultad de Agronomía (LUZ), 40(2), 1-6. https://produccioncientificaluz.org/index.php/agronomia/article/view/39955
Smith, J.A. (2019). Broiler production without antibiotics: United States field perspectives. Animal Feed Science and Technology, 250, 93–98. https://www.sciencedirect.com/science/article/pii/S0377840118302050?via %3Dihub
Vasile F. E., Romero A. M., Judis M. A., Mattalloni M., Virgolini M. B. & Mazzobre M. F. (2019). Phenolics composition, antioxidant properties and toxicological assessment of Prosopis alba exudate gum. Food Chemistry, 285, 369–379. https://doi.org/10.1016/j.foodchem.2019.02.003.
Wang, X., Farnell, Y.Z., Peebles, E.D., Kiess, A.S., Wamsley, K.G.S. & Zhai, W. (2016). Effects of prebiotics, and their combination on growth performance, small intestine morphology and resident Lactobacillus of male broilers. Poultry Science, 95, 1332–1340. https://doi.org/10.3382/ps/pew030
Wang, Y., Heng, C., Zhou, X., Cao, G., Jiang, L., Wang, J., Li, K., Wang, D. & Zhan, X., (2020). Supplemental Bacillus subtilis DSM 29784 and enzymes, alone or in combination, as alternatives for antibiotics to improve growth performance, digestive enzyme activity, anti-oxidative status, immune response, and the intestinal barrier of broiler chickens. British Journal of Nutrition, 125, 1–14 https://doi.org/10.1017/S0007114520002755
Wang, X., Kiess, A.S., Peebles, E.D., Wamsley, K.G.S. & Zhai, W. (2018). Effects of Bacillus subtilis and zinc on the growth performance, internal organ development and intestinal morphology of male broilers with or without subclinical coccidia challenge. Poultry Science, 97, 3947–3956. https://doi.org/10.3382/ps/pey262
Xiong, W., Wang, Y., Sun, Y., Ma, L., Zeng, Q., Jiang, X. & Zhang, T. (2018). Antibiotic-mediated changes in the fecal microbiome of broiler chickens define the incidence of antibiotic resistance genes. Microbiome, 6, 1–11. https://doi.org/10.1186/s40168-018-0419-2
Published
2024-11-04
How to Cite
Rincón-Acosta, F., Hurtado, E., Robalino-Briones, C., & Aguilar-Camba, P. (2024). Gums exudates of Prosopis spp. located in Ecuador: prebiotic potential in animal feed. Revista De La Facultad De Agronomía De La Universidad Del Zulia, 41(4), e244139. Retrieved from https://produccioncientificaluz.org/index.php/agronomia/article/view/42902
Section
Review article