Unmanned aerial systems and passive remote sensors to classify microecosystems of high Andean grasslands
Abstract
Pastures are the fodder base for camelid and sheep production in the southern Peruvian Andes, where 80% of alpacas and 15 % of sheep live, which requires better land management and grazing programs through the classification of microecosystems. The objective of this study was to classify the microecosystems based on the grasslands of the Kayra Agronomic Center in the Region of Cusco using unmanned aerial vehicles and remote sensors. To do this, traditional evaluation and estimation methods such as modified Parker and quadrat sampling, were combined with biomass classification and estimation methods supported by multispectral images. This was done using 5 m RapidEye satellite images, and multispectral orthophotographs acquired with a Micasense sensor transported by a Matrix 300 RTK Drone with 10 cm pixels. Processing was performed by Pix 4D version 4.7.5 photogrammetry software, and ENVI and ArcGIS 10.3 image processing software. An algorithm designed in the R programming language was used to estimate the biomass. The results show three life zones, three climatic zones, four ecosystems, and four plant communities with eleven dominant species. The condition of the grasslands evaluated was regular with a tendency to poor and a carrying capacity of 0.3 UV.ha-1.year-1; 0.83 UO.ha-1.year-1 and 1.11UA.ha-1.year-1. The use of remote sensors made it possible to classify grasslands quickly and efficiently.
Downloads
References
Chen, J., Jönsson, P., Tamura, M., Gu, Z., Matsushita, B., & Eklundh, L. (2004). A simple method for reconstructing a high-quality NDVI time-series data set based on the Savitzky-Golay filter. Remote Sensing of Environment, 91(3–4), 332–344. https://doi.org/10.1016/j.rse.2004.03.014
Comer, P.J., Young, B., Schulz, K., Kittel, G., Unnasch, B., Braun, D., Hammerson, G., Smart, L., Hamilton, H., Auer, S., Smyth, R., & Hak, J. (2012). Climate Change Vulnerability and Adaptation Strategies for Natural Communities: Piloting methods in the Mojave and Sonoran deserts. Report to the US Fish. Report to the U.S. Fish and Wildlife Service. NatureServe, Arlington, VA, September.https://transfer.natureserve.org/download/Longterm/Ecology/HCCVI/DesertLCCpilot/NatureServe_HCCVI_Report.pdf
D’Oleire-Oltmanns, S., Marzolff, I., Peter, K. D., & Ries, J. B. (2012). Unmanned aerial vehicle (UAV) for monitoring soil erosion in Morocco. Remote Sensing, 4(11), 3390–3416. https://doi.org/10.3390/rs4113390
Estrada Zúñiga, A. C., Cárdenas, J., Bejar, J.V., & Ñaupari, J. (2022). Biomass estimation of a high Andean plant community with multispectral images acquired using UAV remote sensing and Multiple Linear Regression, Support Vector Machine and Random forest models. Scientia Agropecuaria, 13(3), 301–310. https://doi.org/10.17268/sci.agropecu.2022.027
Estrada Zúñiga, A. C., & Ñaupari Vásquez, J. (2021). Detección e identificación de comunidades vegetales altoandinas, Bofedal y Tolar de Puna Seca mediante ortofotografías RGB y NDVI en drones “Sistemas Aéreos no Tripulados.” Scientia Agropecuaria, 12(3), 291–301. http://dx.doi.org/10.17268/sci.agropecu.2021.032.
Fuhlendorf, S. D., Archer, S. A., Smeins, F., Engle, D. M., & Taylor, C. A. (2012). The Combined Influence of Grazing, Fire, and Herbaceous Productivity on Tree–Grass Interactions. 219–238. https://doi.org/10.1007/978-0-387-34003-6_12
Holdrigde, L. (1978). Ecología basada en zonas de vida. IICA.
Lussem, U., Bolten, A., Menne, J., Gnyp, M. L., Schellberg, J., & Bareth, G. (2019). Estimating biomass in temperate grassland with high resolution canopy surface models from UAV-based RGB images and vegetation indices. Journal of Applied Remote Sensing, 13(03), 1. https://doi.org/10.1117/1.jrs.13.034525
Melville, B., Lucieer, A., & Aryal, J. (2019). Classification of lowland native grassland communities using hyperspectral unmanned aircraft system (Uas) imagery in the tasmanian midlands. Drones, 3(1), 1–12. https://doi.org/10.3390/drones3010005
Meneses, V. A. B., Téllez, J. M., & Velasquez, D. F. A. (2015). Uso De Drones Para El Analisis De Imágenes Multiespectrales En Agricultura De Precisión. @limentech, Ciencia y Tecnología Alimentaria, 13(1). https://doi.org/10.24054/16927125.v1.n1.2015.1647
Ministerio del Ambiente MINAM. (2016). Guía complementaria para la compensación ambiental: Ecosistemas Altoandinos. Resolución Ministerial N° 183-2016-MINAM, 27446, 5–41. https://www.minam.gob.pe/wp-content/uploads/2016/07/RM-N%C2%B0-183-2016-MINAM1.pdf
Muñoz Gómez, F. A., Galicia Sarmiento, L., & Pérez, E. H. (2018). Agricultura migratoria conductor del cambio de uso del suelo de ecosistemas alto-andinos de colombia. Biotecnoloía En El Sector Agropecuario y Agroindustrial, 16(1), 15. https://doi.org/10.18684/bsaa(16)15-25
Paredes, M. (2019). Uso de índices de vegetación del sensor MODIS – TERRA en la estimación de biomasa aérea de pajonales altoandinos. Universidad Nacional Agraria La Molina, 1(2), 87. http://repositorio.lamolina.edu.pe/bitstream/handle/20.500.12996/3351/paredes-chocce-miguel-enrique.pdf?sequence=1&isAllowed=y
Pizarro Carcausto, S. E. (2017). Degradación y vulnerabilidad al cambio climático en pastizales altoandinos. Universidad Nacional Agraria La Molina, 201. http://repositorio.lamolina.edu.pe/handle/UNALM/2916
Ramírez, D. G., Giraldo, A., & Tovar, J. (2006). Producción primaria, biomasa y composición taxonómica del fitoplancton costero y oceánico en el Pacífico Colombiano (Septiembre-Octubre 2004). Investigaciones Marinas, 34(2), 211–216. https://doi.org/10.4067/s0717-71782006000200023
Quspe, C. (2016). Análisis de GSD para la generación de cartografía utilizando la tecnología drone, huaca de la Universidad Nacional Mayor de San Marcos. Revista Del Instituto de Investigación de La Facultad de Ingeniería Geológica, Minera, Metalurgica y Geográfica, 18(36), 21–26. https://doi.org/10.15381/iigeo.v18i36.12014
Seo, H. S., Phua, M. H., Ong, R., Choi, B., & Lee, J. S. (2014). Determining aboveground biomass of a forest reserve in malaysian borneo using K-nearest neighbour method. Journal of Tropical Forest Science, 26(1), 58–68.https://www.jstor.org/stable/23617014
Tomasi, J. (2013). Espacialidades pastorilesen las tierras altoandinas. Asentamientos y movilidades en Susques, puna de Atacama (Jujuy, Argentina). Revista de Geografia Norte Grande, 87(55), 67–87. https://doi.org/10.4067/s0718-34022013000200006
Xu, D., & Guo, X. (2015). Some insights on grassland health assessment based on remote sensing. Sensors (Switzerland), 15(2), 3070–3089. https://doi.org/10.3390/s150203070
Yaranga, R. (2020). High-Andean wetland of Peru: Floristic diversity, primary net aerial productivity, ecological condition, and carrying capacity. Scientia Agropecuaria, 11(2), 213–221. https://doi.org/10.17268/SCI.AGROPECU.2020.02.08
Yim, J. S., Han, W. S., Hwang, J. H., Chung, S. Y., Cho, H. K., & Shin, M. Y. (2009). Estimation of Forest Biomass based upon Satellite Data and National Forest Inventory Data. Korean Journal of Remote Sensing, 25(4), 311–320.https://doi.org/10.7780/kjrs.2009.25.4.311
Zaragoza-Quintana, E. P., Cotera Correa, M., Pando Moreno, M., Scott Morales, L. M., Estrada Castillón, A. E., & González Rodríguez, H. (2022). Salud del ecosistema de pastizal y biomasa en áreas naturales protegidas para el perrito llanero mexicano (Cynomys mexicanus) en Nuevo León, México. Acta Universitaria, 32, 1–19. https://doi.org/10.15174/au.2022.3495
Zarria, M., & Flores, E. (2015). Inventario y estrategias de mejora de los pastizales de los sistemas de producción de alpacas en la sierra central. Lima: Universidad Nacional Agraria La Molina. http://repositorio.lamolina.edu.pe/bitstream/handle/UNALM/2080/F01-Z377i-T.pdf?sequence=1&isAllowed=y
Zorogasúa-Cruz, P., Quiroz, R., & Garatuza-Payan, J. (2012). Dinámica de los bofedales en el altiplano peruano-boliviano. Revista Latinoamericana de Recursos Naturales, 8(2), 63–75.https://revista.itson.edu.mx/index.php/rlrn/article/view/202
Copyright (c) 2023 Andrés Corsino Estrada Zúñiga, Dante Astete Canal, Jim Cárdenas Rodríguez; Dunker Arturo Alvarez Medina; Juan Víctor Bejar Saya, Juan Elmer Moscoso Muñoz
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.