Inoculation methods of native strains of Trichoderma sp. and their effect on the growth and yield of quinoa

  • Betsabe Leon Ttacca Departamento Académico de Agronomía, Facultad de Ciencias Agrarias, Universidad Nacional de Cañete, Jr. San Agustín 124, San Vicente de Cañete Lima, Perú Facultad Ciencias Agrarias, Escuela Profesional de Ingeniería Agronómica, Universidad Nacional del Altiplano de Puno, Ciudad Universitaria. Av. Floral Nº 1153 Puno – Perú. https://orcid.org/0000-0002-4343-2431
  • Nora Ortiz Calcina Laboratorio de Sanidad Vegetal, Facultad Ciencias Agrarias, Universidad Nacional del Altiplano de Puno, Ciudad Universitaria. Av. Floral Nº 1153 Puno, Perú. https://orcid.org/0000-0003-3772-7564
  • Luis Pauro Flores Escuela de Posgrado, Universidad Nacional del Altiplano de Puno, Ciudad Universitaria. Av. Floral Nº 1153 Puno, Perú. https://orcid.org/0000-0002-0431-4643
  • Rodrigo Borja Loza Escuela de Posgrado, Universidad Nacional del Altiplano de Puno, Ciudad Universitaria. Av. Floral Nº 1153 Puno, Perú. https://orcid.org/0000-0002-4241-5189
  • Paul Mendoza-Coari Instituto Nacional de Innovación Agraria – INIA, Puno, Perú. https://orcid.org/0000-0002-4674-2195
  • Luis Palao Iturregui Facultad Ciencias Agrarias, Escuela Profesional de Ingeniería Agronómica, Universidad Nacional del Altiplano de Puno, Ciudad Universitaria. Av. Floral Nº 1153 Puno, Perú. https://orcid.org/0000-0002-8527-8866
Keywords: Growth, yield, production, endophytic fungi, Chenopodium quinoa

Abstract

The use of endophytic fungi is an effective alternative to control pathogens, improve plant metabolism and yield in crops. The objective of this study was to assess the effect of five different strains of Trichoderma sp. on the growth and yield of quinoa plants (Chenopodium quinoa Willd) by using two methods of inoculation: a) pelleted seed, and b) drenching with the endophytic fungi. A completely randomized design with a 2 x 5 factorial arrangement, plus a control with five repetitions was used. The 11 treatments were evaluated with five repetitions. Yield, and aerial and root growth variables were determined. There were no interactions between strains and inoculation methods for aerial plant growth, but there were for root growth and yield. The seed pelleting method produced a higher aerial growth compared to the drench method. In root length, the greatest values were found with the TE-7 and TE-126 strains combined with the pelleted seed method. Likewise, the TE-126 strain induced the greatest dry biomass of roots using the same method. The yield varied between 4147.6 and 3222.7 kg.ha-1 in most of the strain-method combinations, without significant differences between them. Statistically, the control always ranked last, indicating the importance of the seed inoculation. Trichoderma sp. produced increases in vegetative growth and quinoa yield, with TE-7 and TE-126 being the best strains. Furthermore, seed pelleting promoted vegetative growth of the plants, while grain yield was not affected by the inoculation method.

Downloads

Download data is not yet available.

References

Afzal, I., Javed, T., Amirkhani, M., & Taylor, A. G. (2020). Modern seed technology: Seed coating delivery systems for enhancing seed and crop performance. Agriculture, 10(11), 526. https://www.mdpi.com/2077-0472/10/11/526
Alandia, G., Rodríguez, J. P., Jacobsen, S. E., Bazile, D., & Condori, B. (2020). Global expansion of quinoa and challenges for the Andean region. Global Food Security, 26 (September), 100429. https://doi.org/10.1016/j.gfs.2020.100429
Arévalo, E., Cayotopa., J., Olivera, D., Gárate, M., Trigoso, E., Costa, do B., & León, B. (2017). Optimización de sustratos para la producción de conidias de Trichoderma harzianum por fermentación sólida en la región de San Martín. Perú. Revista de Investigaciones Altoandinas, 19(2), 135-144. https://dx.doi.org/10.18271/ria.2017.272
Banjac, N., Stanisavljević, R., Dimkić, I., Velijević, N., Soković, M., & Ćirić, A. (2021). Trichoderma harzianum IS005-12 promotes germination, seedling growth and seedborne fungi suppression in Italian ryegrass forage. Plant Soil Environment, 67, 130-136. https://doi.org/10.17221/581/2020-PSE
Baron, N. C., and Rigobelo, E. C. (2022). Endophytic fungi: a tool for plant growth promotion and sustainable agriculture. Mycology, 13(1), 39-55. https://doi.org/10.1080/21501203.2021.1945699
Benítez, T., Rincón, A. M., Limón, M. C., & Codón, A. C. (2004). Biocontrol mechanisms of Trichoderma strains. International Microbiology, 7(4), 249-260. https://scielo.isciii.es/pdf/im/v7n4/Benitez.pdf
Berg, G. (2009). Plant-microbe interactions promoting plant growth and health: Perspectives for controlled use of microorganisms in agriculture. Applied Microbiology and Biotechnology, 84(1), 11-18. https://doi.org/10.1007/s00253-009-2092-7
Brenes-Madriz, J., Zúñiga-Vega, C., Villalobos-Araya, M., Zúñiga-Poveda, C., & Rivera-Méndez, W. (2019). Efectos de Trichoderma asperellum en la estimulación del crecimiento en chile dulce (Capsicum annum) variedad Nathalie en ambientes protegidos. Revista Tecnología en Marcha, 32(3), 79-86. https://doi.org/10.18845/tm.v32i3.4481
Camargo-Cepeda, D. F., and Ávila, E. R. (2014). Efectos del Trichoderma sp. sobre el crecimiento y desarrollo de la arveja (Pisum sativum L.). Ciencia y Agricultura, 11(1), 91. https://:10.19053/01228420.3492
Chagas, L. F. B., Chagas Junior, A. F., Soares, L. P., & Fidelis, R. R. (2017). Trichoderma na promoção do crescimento vegetal. Revista de Agricultura Neotropical, 4(3), 97-102. https://doi.org/10.32404/rean.v4i3.1529
De Oliveira, J. B., Muniz, P. H. P. C., Peixoto, G. H. S., De Oliveira, T. A. S., Duarte, E. A. A., Rodrigues, F., & Carvalho, D. D. C. (2018). Promotion of seedling growth and production of wheat by using Trichoderma spp. Journal of Agricultural Science, 10(8), 267-276. https://doi.org/10.5539/jas.v10n8p267
El-Ibrahime, I., and Mourad, K. (2020). Efficacy of some Trichoderma species on management of sunflower head-rot. Journal of Plant Protection and Pathology, 11(11), 537-542. https://doi.org/10.21608/jppp.2020.131796
Organización de las Naciones Unidas para la Alimentación y la Agricultura (FAO). (2016). Guía del cultivo de la quinoa. Statewide Agricultural Land Use Baseline 2015. Food and Agriculture Organization (2a Edición, Vol. 1). https://www.fao.org/3/i5374s/i5374s.pdf
García, M., Condori, B., & Del Castillo, C. (2015). Agroecological and agronomic cultural practices of quinoa in South America. En: K. Murphy and J. Matanguihan (Eds.), Quinoa: Improvement and Sustainable Production. (Chapter 3, pp. 25-45). John Wiley & Sons. https://doi.org/10.1002/9781118628041.ch3
Gaviola, J. C. (2020). Producción de semillas hortícolas. Ediciones INTA. https://n9.cl/7tvhu
Harman, G. E., and Shoresh, M. (2007). The mechanisms and applications of symbiotic opportunistic plant symbionts. En V. M. and G. J. (Eds.), Novel Biotechnologies for Biocontrol Agent Enhancement and Management (pp. 131-155). https://doi.org/10.1007/978-1-4020-5799-1_7
Instituto Nacional de Estadística e Informática (INEI). (2022). Panorama de la Economía Peruana 1950-2021. Instituto Nacional de Estadística e Informática. https://n9.cl/teo0w
Infante, D., Martínez, B., González, N., & Reyes, Y. (2009). Mecanismos de acción de Trichoderma frente a hongos fitopatógenos. Revista de Protección Vegetal, 24(1), 14-21. http://revistas.censa.edu.cu/index.php/RPV/article/view/542/670
León Ttacca, B., Mendoza Coari, P., Soto Gonzales, J. L., & Borja Loza, Y. R. (2021). Trichoderma sp. endófito y microorganismos eficaces en el control de kcona kcona (Eurysacca sp.) y mejora del rendimiento de Chenopodium quinoa. Revista Alfa, 5(14), 346-355. https://doi.org/10.21930/rcta.vol20_num1_art:1251
León Ttacca, B., Ortiz Calcina, N., Condori Ticona, N., & Chura Yupanqui, E. (2018). Cepas de Trichoderma con capacidad endofitica sobre el control del mildiu (Peronospora variabilis Gäum.) y mejora del rendimiento de quinua. Revista de Investigaciones Altoandinas, 20(1), 19-30. https://dx.doi.org/10.18271/ria.2018.327
Loli Figueroa, O. (2012). Análisis de suelos y fertilización en el cultivo de café. https://n9.cl/ltp3j
López-Valenzuela, B.E, Armenta-Bojórquez, A.D., Hernández-Verdugo, S., Apodaca-Sánchez, M.A., Samaniego-Gaxiola, J.A., & Valdez-Ortiz, A. (2019). Trichoderma spp. and Bacillus spp. as growth promoters in maize (Zea mays L.). ΦYTON, 9457(88), 37-46. https://doi:10.32604/phyton.2019.04621
Ministerio de Desarrollo Agrario y Riego (MINAGRI). (2021). Observatorio de las Siembras y Perspectivas de la producción Quinua. Ministerio de Desarrollo Agrario y Riego (MINAGRI), Perú. https://n9.cl/bn95f
Robles Yerena, L., Leyva Mir, S. G., Cruz Gómez, A., Camacho Tapia, M., Nieto Ángel, D., Tovar Pedraza, J. M., Robles Yerena, L., Leyva Mir, S. G., Cruz Gómez, A., Camacho Tapia, M., Nieto Ángel, D., & Tovar Pedraza, J. M. (2016, agosto). Fusarium oxysporum Schltdl. y Fusarium solani (Mart.) Sacc. Causantes de la marchitez de plántulas de Pinus spp. En vivero. Revista Mexicana de Ciencias Forestales, 7(36), 25-36. http://www.scielo.org.mx/scielo.php?script=sci_abstract&pid=S2007-11322016000400025&lng=es&nrm=iso&tlng=es
Ruíz-Cisneros, M. F., Ornelas-Paz, J. D. J., Olivas-Orozco, G. I., Acosta-Muñiz, C. H., Sepúlveda-Ahumada, D. R., Pérez-Corral, D. A., Ríos-Velasco, C., Salas-Marina, M. Á., & Fernández-Pavia, S. P. (2018). Efecto de Trichoderma spp. y hongos fitopatógenos sobre el crecimiento vegetal y calidad del fruto de jitomate. Revista Mexicana de Fitopatología, 36(3), 444-456. https://doi.org/10.18781/r.mex.fit.1804-5
Stewart, A., and Hill, R. (2014). Applications of Trichoderma in plant growth promotion. En: Biotechnology and Biology of Trichoderma. (Chapter 31, pp. 415-428). Elsevier. https://doi.org/10.1016/B978-0-444-59576-8.00031-X
Stocco, M., Lampugnani, G., Zuluaga, S., Abramoff, C., Cordo, C., & Mónaco, C. (2019). Fungicida biológico a base de una cepa del hongo Trichoderma harzianum: su supervivencia en el suelo. Revista de la Facultad de Agronomía, 118(2), 020. https://doi.org/10.24215/16699513e020
Urdanegui, P., Pérez-Ávila, A., Estrada-Zúñiga, R., Neyra, E., Mujica, A., & Corredor F. A. 2021. Rendimiento y evaluación agromorfológica de genotipos de quinua (Chenopodium quinoa Willd.) en Huancayo, Perú. Agroindustrial Science 11(1), 63-71. http://dx.doi.org/10.17268/agroind.sci.2021.01.08
Veas, E., and Cortés, H. (2018). Manual del cultivo de la Quinoa. Cultivo ancestral como una alternativa eficiente para la adaptación de la agricultura al cambio climático. Ceaza; INIA, 48. https://n9.cl/yuenz
Vergani, I., and Zúñiga Dávila, D. (2018). Efecto de la inoculación y peletización en la germinación y crecimiento de plantas de maca (Lepidium meyenii W.) a nivel in vitro e invernadero. Revista Peruana de Biología, 25(3), 329. https://doi.org/10.15381/rpb.v25i3.14035
Woo, S. L., Ruocco, M., Vinale, F., Nigro, M., Marra, R., Lombardi, N., Pascale, A., Lanzuise, S., Manganiello, G., & Lorito, M. (2014). Trichoderma-based products and their widespread use in agriculture. The Open Mycology Journal, 8(1), 71-126. https://doi.org/10.2174/1874437001408010071
Yaqub, F., and Shahzad, S. (2008). Effect of seed pelleting with Trichoderma spp., and Gliocladium virens on growth and colonization of roots of sunflower and mung bean by Sclerotium rolfsii. Pakistan Journal of Botany, 40(2), 947-953. https://n9.cl/fwtes
Plants of quinoa var. Salcedo INIA of 89 days of age (phenological stage of treated with strains of *Trichoderma *sp. by the method of inoculation of pelleted seed. inoculation of pelleted seed.
Published
2022-12-06
How to Cite
Leon Ttacca, B., Ortiz Calcina, N., Pauro Flores, L., Borja Loza, R., Mendoza-Coari, P., & Palao Iturregui, L. (2022). Inoculation methods of native strains of Trichoderma sp. and their effect on the growth and yield of quinoa. Revista De La Facultad De Agronomía De La Universidad Del Zulia, 39(4), e223955. Retrieved from https://produccioncientificaluz.org/index.php/agronomia/article/view/39257
Section
Crop Production