Agrolandscape structure and damage caused by red squirrels to cocoa pods

Keywords: biomass, connectivity, Merida, Notosciurus granatensis, shade, Theobroma cacao, Venezuela

Abstract

Cocoa is a strategic resource because it hosts high biodiversity, and it is a reliable source of foreign exchange. In Venezuela, fungi and red squirrels mainly affect its productivity. The objective was to evaluate the influence of the cocoa crop structure on the level of damage caused by red squirrels on the pods. The vegetation structure was defined in 15 farms assessing the cocoa tree biomass, the magnitude of shade tree cover, number of associated crops, presence of alternative fruit trees, and the type of ecological succession present in the surrounding. The % of damage was calculated, and nonparametric tests were used to process data. The damage was higher in crops with less shade cover, a more abundant number of associated crops, and alternative fruit trees. Squirrels used the cocoa pods opportunistically but preferred other fruits. It is concluded that pods can be a complementary food for squirrels to the extent that the cocoa plantation is more complex and has a connection with the forest. Shade cover did not directly influenced squirrels, but it is crucial for bird predators which are more sensitive to disturbance.

Downloads

Download data is not yet available.

References

Alvarenga, C. A. and Talamoni, S. (2006). Foraging behaviour of the Brazilian squirrel Sciurus aestuans (Rodentia, Sciuridae). Acta Theriologica, 51(1), 69-74.
Alves de Sousa Silva, A., Del Valle-Álvarez, M., Mariano-Neto, E. & Righetto-Cassano, C. (2018). Is shadier better? The effect of agroforestry management on small mammal diversity. Biotropica, 00, 1-10.
Badrie, N., Bekele, F., Sikora, E. & Sikora, M. (2015). Cocoa agronomy, quality, nutritional, and health aspects. Critical Reviews in Food Science and Nutrition, 55, 620-659. https://doi.org/10.1080/10408398.2012.669428.
Canavelli S. B., Branch L. C., Cavallero O., González C. & Zaccagnini M. E. (2014). Multi-level analysis of bird abundance and damage to crop fields. Agriculture, Ecosystems and Environment, 197, 128-136. https://doi.org/10.1016/J.AGEE.2014.07.024.
Cassano, C., Kierulff, M. C. M. & Chiarello, A. G. (2011). The cacao agroforests of the Brazilian Atlantic Forest as habitat for the endangered maned sloth Bradypus torquatus. Mammalian Biology, 76, 243-250. https://doi.org/10.1016/j.mambio.2010.06.008.
Craig, T. and Gese, E. (2013). Influence of vegetation structure on the small community in a shortgrass prairie ecosystem. Acta Theriologica, 58, 55-61. https://doi.org/10.1007/s13364-012-0098-5.
Daghela, H. B., Fotio, D., Missoup, A. D. & Vidal, S. (2013). Shade Tree Diversity, Cocoa Pest Damage, Yield Compensating Inputs and Farmers’ Net Returns in West Africa. Plos One, 8(3), 1-9. https://doi.org/10.1371/journal.pone.0056115.
Engelhardt S. C. and Weladji, R. B. (2011). Effect of levels of human exposure on flight initiation distance and distance to refuge in foraging eastern gray squirrels (Sciurus carolinensis). Canadian Journal of Zoology, 89, 823-830. https://doi.org/10.1139/Z11-054.
Engel, L. D., Carlen, E. J., Losos, J. B. & Winchell, K. M. (2020). Eastern gray squirrels (Sciurus carolinensis) differ in abundance and response to humans across urban habitats of St. Louis. Urban Naturalist, 33, 1-16.
Ferreira, T. and Dasband, W. (2012). Imagej user guide. Revised edition. 187 p.
Flaherty, S., Patenaude, G., Close, A. & Lurz, P. W. (2012). The impact of forest stand structure on red squirrel habitat use. Forestry, 85(3), 437-444. https://doi.org/10.1093/forestry/cps042.
Garcés-Restrepo, M. F. and Saavedra-Rodríguez C. A. (2013). Densidad de ardilla roja (Sciurus granatensis) en hábitats con diferentes coberturas vegetales en los Andes de Colombia. Mastozoología Neotropical, 20, 381-386.
Gidoin C., Babin R., Bagny Beilhé L., Barbu C., Gosme M., Jeuffroy M-H., Ngo Bieng M. A., Valantin-Morison M. and Martijn ten Hoopen, G. (7-10 September 2015). Multi-scale studies of the relationships between cropping structure and pest and disease regulation services. 5th International Symposium for Farming Systems Design. Montpellier, France.
Gough, C. M., Atkins, J. W., Fahey, R. T., & Hardiman, B. S. (2019). High rates of primary production in structurally complex forests. Ecology. 100(10), 1-6.
Holloway G. L., Smith W. P., Halpern C. B., Gitzen R. A., Maguire C. C. & West S. D. (2012). Influence of forest structure and experimental green-tree retention on northern flying squirrel (Glaucomys sabrinus) abundance. Forest Ecology and Management, 285, 187-194. https://doi.org/10.1016/j.foreco.2013.10.026.
Holloway, G. and Malcolm, J. (2007). Nest-tree used by Northern and Southern flying squirrels in Central Ontario. Journal of Mammalogy, 88(1), 226-233. https://doi.org/10.1644/05-MAM-A-368R2.1.
Huber, O., Oliveira-Miranda, M., Rodríguez, J. P., Rojas-Suárez, F. & Giraldo-Hernández, D. (2010). Libro rojo de los ecosistemas terrestres de Venezuela. Provita.
Huy, B., Poudel, K., Kralicek, K., Dinh Hung, N., Van Khoa, P., Tan Phương, V. & Temesgen, H. (2016). Allometric Equations for Estimating Tree Aboveground Biomass in Tropical Dipterocarp Forests of Vietnam. Forests, 7, 1-19. https://doi.org/10.1016/j.foreco.2016.10.021.
IBM Corp. (2011). IBM SPSS Statistics for windows, Version 20.0. Armonk, NY: IBM Corp.
Kittendorf, A. and Danzer, B. (2021). Urban fox squirrels exhibit habituation to humans but respond to stimuli from natural predators. Ethology, 9,697-709. https://doi.org/doi:10.1111/eth.13206.
López N., Flores E., Castillo J., & Montalvan O. (2014). Plagas en Cacaotales. Municipio Siuna. Ciencia e Interculturalidad. 14, 106-114.
Mäkeläinen, S., de Knegt, H., Ovaskainen, O. & Hanski, I. (2016). Home-range patterns and movements of the Syverian flying squirrel in urban forests: effects of the habitat composition and connectivity. Movement Ecology, 14, 4-13.
Milosavljevic I., Esser A. D. & Cowder J. W. (2016). Effects of environmental and agronomic factors on soil-dwelling pest communities in cereal crops. Agriculture, Ecosystems and Environment, 225, 192-198. https://doi.org/10.1016/j.agee.2016.04.006.
Mollineau F., Bekele F. & García G. (2008). The Neo-tropical red squirrel (Sciurus granatensis) as a pest of cacao (Theobroma cacao L.) in the International Cacao Genebank, Trinidad. Tropical Agriculture Trinidad. 85, 1-12.
Monge, J. and Hilje, L. (2006). Hábitos alimenticios de la ardilla (Sciurus variegatoides), (Rodentia: Sciuridae). Nicoya, Costa Rica. Revista de Biología Tropical, 54(2), 681-686.
Portillo, E., Martínez, E., Araujo, F., Parra, R. y Esparza, D. (1995). Diagnóstico técnico-agronómico para el cultivo de cacao (Theobroma cacao L.) en el Sur del Lago de Maracaibo. Revista de la Facultad de Agronomía Universidad del Zulia. 12, 151-166.
Potash, A., Conner, M. & McClleery, R. (2019). Vertical and horizontal vegetation cover synergistically shape prey behavior. Animal Behaviour, 152, 19-44. https://doi.org/10.1016./j.anbehav.2019.04.007.
Reher, S., Dausmann, K., Warnecke, L. & Turner, J. (2016). Food availability affects habitat use of Eurasian squirrels (Sciurus vulgaris) in a semi-urban environment. Journal of Mammalogy, 97(6), 1543-1554. https://doi.org/10.1093/jmammal/gyw105.
Sagorski, M. E. and Swihart, R. K. (2021). Raptor resource use in agroecosystems: cover crops and definitions of availability matter. Avian Conservation and Ecology, 16, 1-14. https://doi.org/10.5751/ACE01719-160101.
Silva-Ferreira, A., Peres, C., Dodonov, P., & Righetto-Cassano, C. (2020). Multi-scale mammal responses to agroforestry landscapes in the Brazilian Atlantic Forest: the conservation value of forest and traditional shade plantations. Agroforestry Systems. 94: 2331-2341. https://doi.org/10.1007/s10457-020-00553-y.
Smith, R. H. and Nott H. M. (1988). Rodent damage to cocoa in Equatorial Guinea. FAO Plant Protection Bulletin. 36, 19-124.
Sonwa D. J., Weise, S. F., Schroth, G., Janssens, M. J. & Shapiro, H.Y. (2018). Structure of cocoa farming systems in west and central Africa: a review. Agroforestry Systems, 93(5), 2009-2025. https://doi.org/10.1007/s10457-018-0306-7.
Tinajero, R., Barragán, F. & Chapa-Vargas, L. (2017). Raptor functional diversity in scrubland-agricultural landscapes of Northern-Central-Mexican dryland environments. Tropical Conservation Science, 10: 1-18. https://doi.org/10.1177/1940082917712426.
Uchida, K. (2019). The town squirrel and the country squirrel: multiple behavioral comparisons I Eurasian red squirrel between two environments. Ph. D. Thesis. Scholl of Environmental Science. University of Hokaido, Japan. https://eprints.lib.hokudai.ac.jp/dspace/bitstream/2115/83720/1/Kenta_UCHIDA.pdf
Uchida, K., Susuki, K. K., Shimamoto, T., Yanagawa, H. & Koizumi, I. (2017). Escaping height in a tree represents a potential indicator of fearfulness in arboreal squirrels. Mammal Study, 42, 39-43.
Vivas L. 1992. Los Andes Venezolanos. Academia Nacional de La Historia. Italgrafica S.R.L.
Verbeeck, H., Bauters, M., Toby, J., Schenkin, A., Disney, M.I., & Calders, K. (2019). Time for a Plant Structural Economics Spectrum. Frontiers in Forests and Global Change. 2, 1-5. https://doi.org/10.3389/ffgc.2019.00043.
Walter, J. Stovall, A., & Atkins, J. (2021). Vegetation structural complexity and biodiversity in the Great Smoky Mountains. Ecosphere. 12(3), 1-15. https://doi.org/10.1002/ecs2.3390.
Warren J. and Emmandie, D. (1993). Rodent resistance in cacao, Theobroma cacao L. Tropical Agriculture, 70, 286-288.
Wilson, J.A., Kelt, D. & Van Vuren, D. (2008). Home range and activity of the northern flying squirrels (Glaucomys sabrinus) in the Sierra Nevada. The Southwestern Naturalist, 53(1), 21-28.
Published
2022-11-15
How to Cite
Molina, M., & Mazón, M. (2022). Agrolandscape structure and damage caused by red squirrels to cocoa pods. Revista De La Facultad De Agronomía De La Universidad Del Zulia, 39(4), e223951. Retrieved from https://produccioncientificaluz.org/index.php/agronomia/article/view/39093
Section
Crop Production