Anatomical changes caused by Ralstonia solanacearum Smith and Pectobacterium carotovorum (Jones) in Solanum tuberosum L. stems

  • Yonis Hernández Universidad Central de Venezuela, Facultad de Agronomía, Instituto de Botánica Agrícola, Laboratorio de Bacterias Fitopatógenas. Maracay, estado Aragua, Venezuela.
  • Marina García Universidad Técnica de Manabí, Facultad de Ingeniería Agronómica, Departamento de Ciencias Agronómicas, Portoviejo, 130105, Manabí, Ecuador.
  • Rafael Mejías Universidad Central de Venezuela, Facultad de Agronomía, Instituto de Botánica Agrícola, Laboratorio de Bacterias Fitopatógenas. Maracay, estado Aragua, Venezuela.
Keywords: Cauline histology, Bacterial infection, Potato


Potato (Solanum tuberosum L.) is a crop notably affected by various pathogens, including bacterial, and it is important to study the histological changes that they produce to understand the symptoms associated with each disease. The objective of this research was to determine the anatomical changes that occur in potato stems due to the infection caused by Ralstonia solanacearum and Pectobacterium carotovorum. An assay was carried out with 45-day-old plants of the Kennebec variety, which were infiltrated in the basal part of the main stem with a suspension of 108 CFU.mL-1 of R. solanacearum and P. carotovorum, including a control treatment in which the plants were treated with sterile distilled water. Twelve days after inoculation, segments were taken from the second internode of the main stem and they were fixed in FAA (formaldehyde-acetic acid-ethanol 70 %) until processing to obtain cross sections of the stem. In the plants inoculated with R. solancaearum, invasion of the xylem vessels by the bacterium and formation of tyloses in some of them was observed. In the case of P. carotovorum, necrosis in the form of discontinuous bands in the epidermal cells, cortex, vascular cylinder, and pith was observed, as well as obstruction in xylem vessels by the bacteria and tylosis in some of them. The anatomical changes in the stem, induced by the two bacteria studied, are directly linked to the symptomatology of the disease that each of them causes in the potato crop.


Download data is not yet available.


Agyemang, P. A., Niamul, M. D., Kersey, C. M., y Korsi, C. (2020). The bacterial soft rot pathogens, Pectobacterium carotovorum and P. atrosepticum, respond to different classes of virulence-inducing host chemical signals. Horticulturae, 6 (13), 1-13.
Artschwager, E. R. (1920). Pathological anatomy of potato blackleg. Journal of Agricultural Research, 20, 325-330.
Álvarez, B., Biosca E. G., y López, M. M. (2010). On the life of Ralstonia solanacearum, a destructive bacterial plant pathogen. En: Mendez-Vilas, A. (Ed.), Current Research, Technology and Education Topics in Applied Microbiology and Microbial Biotechnology (pp. 267-279). Formatex Research Center.
Barras, F., Van Gijsegem, F., y Chatterjee, A. K. (1994). Extracellular enzymes and pathogenesis of soft-rot Erwinia. Annual Review of Phytopathology, 32, 201–234.
Buddenhagen, I. y Kelman, A. (1964). Biological and physiological aspect of bacterial wilt caused by Pseudomonas solanacearum. Annual Review of Phytopathology, 2, 203-230.
Charkowski, A. O. (2015). Biology and control of Pectobacterium in potato. American Journal of Potato Research, 92, 223-229.
Charkowski, A. O. (2018). The changing face of bacterial soft-rot diseases. Annu. Rev. Phytopathol, 56, 269-288. 045906
Charkowski A., Sharma, K., Parker, M. L., Secor, G. A., y Elphinstone, J. (2020). Bacterial diseases of potato. En: Campos, H. y Ortiz, O. (Eds.), The Potato Crop (pp. 351-388). Springer.
Czajkowski R., De Boer, W. J., Van Veen, J. A., y Van der Wolf, J. M. (2010). Downward vascular translocation of a green fluorescent protein-tagged strain of Dickeya sp. (Biovar 3) from stem and leaf inoculation sites on potato. Phytopathology, 100 (11), 1128–1137.
Czajkowski, R., Grabe, G. J., y Van der Wolf, J. M. (2009). Distribution of Dickeya spp. and Pectobacterium carotovorum subsp. carotovorum in naturally infected seed potatoes. Eur. J. Plant Pathol. 125, 263–275.
FAOSTAT Food and agriculture data. (2022) Database update on August
Ferreira V., Pianzzola, M. J., Vilaró, F. L., Galván, G. A., Tondo, M. L., Rodriguez, M. V., Orellano, E. G., Valls, M., y Siri M. I. (2017). Interspecific potato breeding lines display differential colonization patterns and induced defense responses after Ralstonia solanacearum infection. Frontiers in Plant Science, 8, 1424.
Fiers, M., Edel-Hermann, V., Chatot, C., Le Hingrat, Y., Alaboivette, C., y Steinberg, C. (2012). Potato soil-borne diseases. A review. Agronomy for Sustainable Development, 32, 93-132.
Genin, S., y Denny, T. P. (2012). Pathogenomics of the Ralstonia solanacearum species Complex. Annual Review of Phytopathology, 50(1), 67-89.
Gayathiri, F., Bharathi B., y Priya K. (2018). Study of the enumeration of twelve clinical important bacterial populations at 0.5 McFarland Standard. International Journal of Creative Research Thoughts (IJCRT), 6(2), 880-893.
Grimault, V., Gelie, B., Lemattre, M., Prior, P., y Schmit, J. (1994). Comparative histology of resistant and susceptible tomato cultivars infected by Pseudomonas solanacearum. Physiological and Molecular Plant Pathology 44, 105-123.
Hayward, A. C. (1991). Biology and epidemiology of bacterial wilt caused by Pseudomonas solanacearum. Annual Review of Phytopathology, 29, 65– 87.
Hernández, Y., Mariño, N., Trujillo, G., y Urbina, T. (2005) Invasión de Ralstonia solanacearum en tejidos de tallos de tomate. Revista de la Facultad de Agronomía (LUZ), 22, 181-190.
Karim, Z., Hossain, M. S., y Begum, M. M. (2018). Ralstonia solanacearum: A threat to potato production in Bangladesh. Fundamental and Applied Agriculture 3(1), 407–421.
Kashyap, A., Planas-Marqués, M., Capellades, M., Valls, M., y Coll, N. (2021). Blocking intruders: inducible physico-chemical barriers against plant vascular wilt pathogens. Journal of Experimental Botany, 72(2), 184–198.
Kastelein, P., Förch, M. G., Krijger, M. C., van der Zouwen, P.S., van den Berg, W., y van der Wolf, J.M. (2020). Systemic colonization of potato plants resulting from potato haulm inoculation with Dickeya solani or Pectobacterium parmentieri. Canadian Journal of Plant Pathology 43(1),1-15.
Khokhani D, Lowe-Power, T. M., Tran, T.M., y Allen, C. (2017). A single regulator mediates strategic switching between attachment/spread and growth/virulence in the plant pathogen Ralstonia solanacearum. American Society for Microbiology 8(5): 1-20.
Lowe-Power, T. M., Hendrich, C. G., von Roepenack-Lahaye, E., Li, B., Wu, D., Mitra, R., Dalsing, B. L., Ricca, P., Naidoo, J., Cook, D., Jancewicz, A., Masson, P., Thomma, B., Lahaye, T., Michael, A. J., y Allen, C. (2018a). Metabolomics of tomato xylem sap during bacterial wilt reveals Ralstonia solanacearum produces abundant putrescine, a metabolite that accelerates wilt disease. Environmental Microbiology, 20(4), 1330–1349.
Lowe-Power, T. M., Khokhani, D., y Allen, C. (2018b) How Ralstonia solanacearum exploits and thrives in the flowing plant xylem environment. Trends in Microbiology, 26(11), 929-942.
Metcalfe, C., y Chalk, L. (1950). Anatomy of the dicotyledons (Vol. II). Clarendon Press.
Moleleki, L. N., Pretorius, R. G., Tanui, C. K., Mosina, G., y Theron, J. (2017). A quorum sensing-defective mutant of Pectobacterium carotovorum ssp. brasiliense 1692 is attenuated in virulence and unable to occlude xylem tissue of susceptible potato plant stems. Molec. Plant Pathol., 18, 32–44.
Nakaho, K., Hibino, H., y Miyawa, H. (2000). Possible mechanisms movement of Ralstonia solanacearum in resistant tomato tissues. Journal of Phytopathology, 148(3), 181-190.
Olivares, B. O., y Hernández, R. A. (2019). Sectorización ecoterritorial para la producción agrícola sostenible del cultivo de papa (Solanum tuberosum L.) en Carabobo, Venezuela. Ciencia y Tecnología Agropecuaria, 20 (2), 323-338.
Pérombelon, M. C. (2002). Potato diseases caused by soft rot erwinias: an overview of pathogenesis. Plant Pathology, 51, 1–12.
Planas-Marquès, M., Kressin, J. P., Kashyap, A., Panthee, D., Louws, F. J., Coll, N. S., y Valls, M. (2020). Four bottlenecks restrict colonization and invasion by the pathogen Ralstonia solanacearum in resistant tomato, Journal of Experimental Botany, 71(6), 2157–2171.
Shtein, I., Koyfman, A., Schwartz, A., Popper, Z., y Bar-On, B. (2020). Solanales stem biomechanical properties are primarily determined by morphology rather than internal structural anatomy and cell wall composition. Plants (Basel), 9(6), 678.
Van der Wolf, J. M., y De Boer, S. (2007). Bacterial pathogens of potato. En: Vreugdenhil, D., Bradshaw, J., Gebhardt, C., Govers, F., MacKerron, D., Taylor, M., y Ross, H. (Eds.), Potato Biology and Biotechnology: Advances and Perspectives (pp. 596-617). Elsevier.
Xue, H., Lozano-Durán, R., y Macho, A. P. (2020). Insights into the root invasion by the plant pathogenic bacterium Ralstonia solanacearum. Plants, 9, 516.
Yadeta K. A., y Thomma, J.B. (2013). The xylem as battleground for plant hosts and vascular wilt pathogens. Frontiers in Plant Science, 23(4), 97.
Yuliar, Y., Nion, Y. A., y Toyota, K. (2015). Recent trends in control methods for bacterial wilt diseases caused by Ralstonia solanacearum. Microbes and Environments, 30, 1–11.
Cross section of Solanum tuberosum stem with obstruction of xylem vessels due to infection with P. carotovorum
How to Cite
Hernández, Y., García, M., & Mejías, R. (2022). Anatomical changes caused by Ralstonia solanacearum Smith and Pectobacterium carotovorum (Jones) in Solanum tuberosum L. stems. Revista De La Facultad De Agronomía De La Universidad Del Zulia, 39(4), e223947. Retrieved from
Crop Production