FTIR-ATR for the identification of Psidium guajava plants infested with Meloidogyne enterolobii

Keywords: Fourier transform infrared spectroscopy, Guava, Guava root-knot nematode, Diagnosis


The Meloidogyne enterolobii Yang and Eisenback nematode represents one of the most devastating pests in guava cultivation in Venezuela and the world. The diagnosis of this parasite requires specialized knowledge and very laborious procedures. The objective of this research was to identify the infrared spectra of guava plants, in the nursery phase, infested with M. enterolobii using Fourier-transform infrared spectroscopy coupled to attenuated total reflectance (FTIR-ATR). Leaves from healthy and infested plants were taken 60 days after nematode inoculation and  analyzed in a FTIR-ATR spectrometer. The main spectral bands corresponding to the chemical compounds (lipids, proteins and carbohydrates) produced by plant metabolism as a result of nematode infestation were characterized. These results represent the starting point to determine the potential of this rapid and non-destructive technique for the early diagnosis of plants infested by the “guava root-knot nematode”.


Download data is not yet available.


Arce-Leal, A., Leyva-López, N., Santos-Cervantes, M., Rodríguez-Negrete, E., Méndez-Lozano, J., Manzanilla-Ramírez, M. y Perea-Flores, M. (2019). Cambios en el metabolismo de carbohidratos asociados a la infección por Candidatus liberibacter asiaticus en limón mexicano (Citrus aurantifolia). Agrociencia 53(4):593-604. https://dialnet.unirioja.es/servlet/articulo?codigo=7015501
Ashokkumar, N. and Poornima, K. (2019). Occurrence and distribution of root knot nematode, Meloidogyne enterolobii in guava (Psidium guajava L.) in Tamil Nadu. Journal of Pharmacognosy and Phytochemistry 8(2), 1922-1924. https://www.phytojournal.com/archives/2019/vol8issue2/PartAF/8-2-400-354.pdf
Baker, M., Trevisan, J., Bassan, P., Bhargava, R., Butler, H., Dorling, K., Fielden, P., Fogarty, S., Fullwood, N., Heys, K., Hughes, C., Lasch, P., Martin-Hirsch, P., Obinaju, B., Sockalingum, G., Sulé-Suso, J., Strong, R., Walsh, M., Wood, B. , Gardner,P. and Martin, F. (2014). Using Fourier transform IR spectroscopy to analyze biological materials. Nature Protocols 9, 1771-1791. https://europepmc.org/articles/pmc4480339/bin/nihms700198-supplement-suppl_file.pdf
Buitrago, M., Skidmore, A., Groen, T. and Hecker, C. (2018). Connecting infrared spectra with plant traits to identify species. Journal of photogrammetry and remote sensing 139, 183-200. https://www.sciencedirect.com/science/article/abs/pii/S0924271618300789
Butler, H., McAinsh, M., Adams, S. and Martin, F. (2015). Application of vibrational spectroscopy techniques to non-destructively monitor plant health and development. Analytical Methods 7, 4059-4070. https://pubs.rsc.org/en/content/articlehtml/2015/ay/c5ay00377f
Castagnone-Serrano, P. (2012). Meloidogyne enterolobii (= M. mayaguensis): profile of an emerging, highly pathogenic, rootknot nematode species. Nematology 14,133–138.
Córdoba, D., Parra, A., Solanilla, J., Hoyos, J. and Roa, D. (2020). Study of the antioxidant and structural properties of quinoa, rice, and soy protein isolates. SYLWAN 164(5), 353-368. https://www.researchgate.net/profile/Diego-Fernando-Roa/publication/341580513_Study_of_the_antioxidant_and_structural_properties_of_quinoa_rice_and_soy_protein_isolates/links/615a46554a82eb7cb5f49d87/Study-of-the-antioxidant-and-structural-properties-of-quinoa-rice-and-soy-protein-isolates.pdf
Crozzoli, R. y Casassa, A. (1998). Especies de Meloidogyne asociadas al cultivo del guayabo (Psidium guajava L.) en el Municipio Mara, Estado Zulia, Venezuela. Revista de la Facultad de Agronomía (LUZ) 15(1), 107-108. https://produccioncientificaluz.org/index.php/agronomia/article/view/26171/26796
Dhakshinamoorthy, S., Mariama, K., Elsen, A. and De Waele, D. (2014). Phenols and lignin are involved in the defence response of banana (Musa) plants to Radopholus similis infection. Nematology 16, 565-576. https://brill.com/view/journals/nemy/16/5/article-p565_4.xml
Eloh, K., Sasanelli, N., Maxia, A. and Caboni, P. (2016). Untargeted metabolomics of tomato plants after root-knot nematode infestation. Journal of Agricultural and Food Chemistry 64, 5963-5968. https://pubs.acs.org/doi/abs/10.1021/acs.jafc.6b02181
Farahat, A., Al-Sayed, A. and Mahfoud, N. (2013). Growth response and chances in chemical composition in some host plants caused by infection with three nematode species. Egyptian Journal Agronematology 12, 139-158.
Gandolfo, D., Mortimer, H., Woodhall, J. and Boonham, N. (2016). Fourier Transform Infra-Red Spectroscopy using an Attenuated Total Reflection probe to distinguish between Japanese larch, pine and citrus plants in healthy and diseased states. Spectrochimica Acta 163, 181-188. https://www.sciencedirect.com/science/article/abs/pii/S138614251630124X
Hawkins, S., Park, B., Poole, G., Gottwald, T., Windham, W. and Lawrence, K. (2010). Detection of citrus Huanglongbing by Fourier transform infrared attenuated total reflection. Applied Spectroscopy 64(1), 100-103. https://journals.sagepub.com/doi/abs/10.1366/000370210790572043
Heredia, J., Benítez, J., Domínguez, E., Bayer, I., Cingolani, R., Athanassiou, A. and Heredia, A. (2014). Infrared and Raman spectroscopic features of plant cuticles: a review. Frontiers Plant Science 5(305), 1-14. https://www.researchgate.net/profile/Jose-Heredia-Guerrero/publication/263364161_Heredia-Guerrero_et_al_2014/links/00b4953aab793ddee9000000/Heredia-Guerrero-et-al-2014.pdf
Huleihel, M., Shufan, E., Tsror, L., Sharaha, U., Lapidot, I., Mordechai, S. and Salman, A. (2018). Differentiation of mixed soil-borne fungi in genus level using infrared spectroscopy and multivariate analysis. Journal of Photochemistry and Photobiology B: Biology 180, 155-165. https://www.sciencedirect.com/science/article/abs/pii/S1011134417307443
Jiang, Y, Lahlali, R., Karunakaran, C., Kumar, S., Davis, A. and Bueckert, R. (2015). Seed set, pollenmorphology and pollen surface composition response to heat stress in field pea. Plant, cell and environment 38(11), 2387-2397. https://onlinelibrary.wiley.com/doi/epdf/10.1111/pce.12589
Kesba, H. and El-Beltagi, H. (2012). Biochemical changes in grape rootstocks resulted from humic acid treatments in relation to nematode infection. Asian Pacific Journal of Tropical Biomedicine 2(4), 287-293. https://www.sciencedirect.com/science/article/abs/pii/S2221169112600240
Kim, C., Seong, K., Bin, J., Lim, C., Moon, D. and Song, S. (2016). Establishment of discrimination system using multivariate analysis of FT-IR spectroscopy data from different species of artichoke (Cynara cardunculus var. scolymus L.). Korean Journal of Horticultural Science and Technology 34, 324-330. https://koreascience.kr/article/JAKO201615964634202.page
Kumar, S., Lahlali, R., Liu, X. and Karunakaran, C. (2016). Infrared spectroscopy combined with imaging a new developing analytical tool in health and plant science. Applied Spectroscopy Reviews 51:466-483. https://www.tandfonline.com/doi/abs/10.1080/05704928.2016.1157808
Liu, G., Dong, X., Liu, L., Wu, L., Peng, S. y Jiang, C. (2014). Boron deficiency is correlated with changes in cell wall structure thatlead to growth defects in the leaves of navel orange plants. Scientia Horticulturae 176:54–62. https://www.sciencedirect.com/science/article/abs/pii/S030442381400363X
Lobna, H., Aymen, E., Hajer, R., M’Hamdi-Boughalleb, N. and Horrigue-Raouani, N. (2017). Biochemical and plant nutrient alterations induced by Meloidogyne javanica and Fusarium oxysporum f. sp. radicis lycopersici co-infection on tomato cultivars with differing level of resistance to M. javanica. European Journal of Plant Pathology 148, 463–472. https://www.proquest.com/openview/041cb8bd630bf68af041bd9718ac64ed/1?pq-origsite=gscholar&cbl=55385
Neugebauer, U., Schmid, U., Baumann, K., Ziebuhr, W., Kozitskaya, S., Deckert, V., Schmitt, M. and Popp, J. (2007). Towards a detailed understanding of bacterial metabolism-spectroscopic characterization of Staphylococcus Epidermidis. ChemPhysChem 8(1), 124-137. https://chemistry-europe.onlinelibrary.wiley.com/doi/abs/10.1002/cphc.200600507
Olale, K., Walyambillah, W., Mohammed, S., Sila, A. and Shepherd, K. (2017). Application of DRIFT-FTIR spectroscopy for quantitative prediction of simple sugars in two local and two Floridian mango (Mangifera indica L.) cultivars in Kenya. Journal of Analytical Science and Technology 8, 1:1-13. https://www.proquest.com/openview/1ab436008280b9e4a34cf8a653f66191/1?pq-origsite=gscholar&cbl=2034725
Pérez-Pérez, E., Ettiene, G., Marín, M., Casassa-Padrón, A., Silva, N., J. Raga, C. González, L. Sandoval y D. Medina. (2014). Determinación de fenoles y flavonoides totales en hojas de guayabo (Psidium guajava L.). Revista de la Facultad de Agronomía (LUZ) 31, 60-77. https://produccioncientificaluz.org/index.php/agronomia/article/view/27149
Perichi, G. y Crozzoli, R. (2010). Morfología, morfométría y hospedantes diferenciales de poblaciones de Meloidogyne de los estados Aragua y Zulia, Venezuela. Fitopatología Venezolana 23(1), 6-15. https://www.researchgate.net/profile/guillermo-perichi/publication/48221047_morfologia_morfometria_y_hospedantes_diferenciales_de_poblaciones_de_meloidogyne_de_los_estados_aragua_y_zulia_venezuela/links/555676b508ae980ca60c8773/morfologia-morfometria-y-hospedantes-diferenciales-de-poblaciones-de-meloidogyne-de-los-estados-aragua-y-zulia-venezuela.pdf
Rahman, M., Zaman, S., Mamun, F., Gias, Z., Alam, M., Ulla, A., Hossain, H. and Alam, A. (2018). Phenolic content analysis in Psidium guajava leaves powder by HPLC-DAD system and in vivo renoprotective and antioxidant activities in fludrocortisone acetate-induced rats. Journal of Food Biochemistry. e12687.https://onlinelibrary.wiley.com/doi/abs/10.1111/jfbc.12687
San-Blas, E., Guerra, M., Portillo, E., Esteves, I., Cubillán, N. and Alvarado, Y. (2011). ATR/FTIR characterization of Steinernema glaseri and Heterorhabditis indica. Vibrational Spectroscopy 57, 220-228. https://www.sciencedirect.com/science/article/abs/pii/S0924203111000968
Sharma, I. and Sharma, A. 2017. Physiological and biochemical changes in tomato cultivar PT-3 with dual inoculation of mycorrhiza and PGPR against root-knot nematode. Symbiosis 71, 75-183. https://www.infona.pl/resource/bwmeta1.element.springer-doi-10_1007-S13199-016-0423-X
Sharma, N., Khajuria, Y., Sharma, J., Tripathi, D., Chauhan, D., Singh V., Kumar, V. and Singh, V. (2018). Microscopic, elemental and molecular spectroscopic investigations of root-knot nematode infested okra plant roots. Vacuum 158, 126-135. https://www.sciencedirect.com/science/article/abs/pii/S0042207X18311795
Suresh, S., Karthikeyan, S. and Jayamoorthy, K. (2016). FTIR and multivariate analysis to study the effect of bulk and nano copper oxide on peanut plant leaves. Journal of Science: Advanced Materials and Devices 1(3), 343- 350. https://www.sciencedirect.com/science/article/pii/S2468217916301125
Topală, C., Tătaru, L., Buciumeanu, E. and Guţă, I. (2017). FTIR spectra of grapevines (Vitis vinifera L.) in the presence of virus infections. Acta Horticulturae 1188, 313-318. https://www.cabdirect.org/cabdirect/abstract/20183271505
Türker-Kaya, S. and Huck C. (2017). A review of mid-infrared and near-infrared imaging: Principles, concepts and applications in plant tissue analysis. Molecules 22(168), 2-20. https://pdfs.semanticscholar.org/93e1/dadca96bf0aa93a5139e4aad8ca904648d07.pdf
Zara, J., Yegres, F., Vargas, N., Cubillan, L., Navas, P. y Márquez, M. (2017). Empleo de la espectroscopía infrarroja (FT-IR-ATR) como herramienta para la caracterización del bagazo de caña proveniente de la Sierra Falconiana. Química Viva 16(3), 17-24. https://www.redalyc.org/pdf/863/86354619003.pdf
How to Cite
Casassa-Padrón, A., Portillo, E., & González, C. (2022). FTIR-ATR for the identification of Psidium guajava plants infested with Meloidogyne enterolobii. Revista De La Facultad De Agronomía De La Universidad Del Zulia, 39(3), e223937. Retrieved from https://produccioncientificaluz.org/index.php/agronomia/article/view/38555
Crop Production