Use of an unmanned aerial vehicle as an alternative to assess the nutritional status of the cotton crop

Keywords: EBEE SQ, Sequoia, chlorophyll Index, multispectral, visible spectrum

Abstract

The use of unmanned aerial vehicles in photogrammetric studies allows obtaining spatial data in short periods of time and with high spatial resolution. In the research, multispectral images were processed for the study of nutritional conditions of the cotton crop (Gossypium hirsutum). An experimental design of the crop was developed, with different doses and nitrogen sources, in a factorial arrangement with 16 treatments and 4 repetitions in plots completely distributed at random. The EBEE SQ agricultural drone, equipped with the Parrot Sequoia camera, was used and a photogrammetric flight was planned, with the Emoticon AG software, which was synchronized with the drone to establish the flight parameters and capture the reflectance information of the visible spectrum, infrared and red border. The captured images were processed with the PIX4D Mapper software to generate the orthophoto and the 4 spectral bands used in the calculation of the chlorophyll index. Using map algebra tools from ArcGIS software on the results obtained, an analysis of variance was performed with the ANOVA model. With the calculated indices it was possible to show differences in the vigor of the crop depending on the treatments. The analysis of the results showed significant differences in the spectral response of the cotton crop fertilized with different sources (urea, pine nut cake, hen manure and bovine manure) and nitrogen doses (50, 100, 150 and 200 N kg.ha-1). Urea treatment at the 150 dose of N kg.ha-1 showed the best spectral response.

Downloads

Download data is not yet available.

References

ArcGIS. (2020). Conjunto de herramientas de Álgebra de mapas. https://bit.ly/30SDu5a.
Bartesaghi, C., Osmond, P., Peters, A. & Matthias, I. (2018). Understanding land surface temperature differences of local climate zones based on airborne remote sensing data. Ieee Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 11(8), 2724-2730. https://bit.ly/3dtBLWZ.
Burbano, C., y Peñaranda, G. (2020). Breve visión de los aspectos evolutivos de la agricultura de precisión como herramienta de gestión. Lumen Gentium, 4(1), 57-67. https://bit.ly/3cFg2v9.
Karydas, C., Latrou M., Kouretas, D., Patouna, A., Latrou G., Lazos, N., Gewehr, S., Tseni X., Tekos F., Zartaloudis, Z., Mainos, E. & Mourelatos, S. (2020). Prediction of antioxidant activity of cherry fruits from UAS multispectral imagery using machine learning. Journal of Antioxidants, 9(2), 156. Disponible en: https://bit.ly/3r29L4O.
Kharuf-Gutierrez, S., Hernández-Santana, L., Orozco-Morales, R., Díaz, A., y Delgado Mora, I. (2018). Análisis de imágenes multiespectrales adquiridas con vehículos aéreos no tripulados. Ingeniería Electrónica Automática y Comunicaciones, 39(2), 79-91. https://bit.ly/3xoq3Gr.
Ledesma M., Rodríguez C., Ledesma, C., Bonansea, M., Pinotti, L. P., Scavuzzo, C. M., y Ferral, A. (2020). Análisis de la distribución temporal de la concentración de Clorofila-a en el embalse Río Tercero, Córdoba, Argentina. Ab Intus, 3(5), 83-87. https://bit.ly/30P6NWX.
Macías-Duarte, R., Grijalva-Contreras, R. L., Robles-Contreras, F., Núñez-Ramírez, F., Cárdenas-Salazar, V. A., & Mendóza-Pérez, C. (2021). SPAD index, nitrates, and sorghum yield in response to nitrogen supply. Agronomía Mesoamericana, 32(1), 293-305. https://bit.ly/3DPU3O2.
Marín, J., Betancur, L., y Arguello, H. (2018). Modelo de muestreo comprimido multiespectral para radio cognitiva. Ingeniare. Revista chilena de Ingeniería, 26(2), 225-240. https://bit.ly/3l2WAx0.
Parrot Drone SAS. (2020). Manual, soporte y accesorio de uso de cámaras multiespectrales. Disponible en: https://bit.ly/3FyUwVc.
Pix4D SA. (2019). Pix4D Mapper. https://bit.ly/3nJgcrs.
Prando, A., Souza, T., de Oliveira, A., & Zucareli, C. (2019). Produtividade, índice de vegetação e clorofila de trigo em resposta à inoculação com Azospirillum brasilense e adubação nitrogenada em cobertura. Cultura Agronômica, 28(3), 329-342. https://bit.ly/3CFDSBq.
Xu, M., Liu, R., Chen, J., Liu, Y., Shang, R., Ju, W., Wu, Ch. & Huang, W. (2019). Retrieving leaf chlorophyll content using a matrix-based vegetation index combination approach. Remote Sensing of Environment, 224, 60-73. https://bit.ly/3pME11F.
Zhou, X., Huang, W., Kong, W., Ye, H., Dong, Y. & Casa, R. (2017). Assessment of leaf carotenoids content with a new carotenoid index: Development and validation on experimental and model data. International journal of Applied Earth Observation and Geoinformation, 57(5), 24-35. https://bit.ly/3Eux1wf.
Zhou, X., Huang, W., Zhang, J., Kong, W., Casa, R., & Huang, Y. (2019). A novel combined spectral index for estimating the ratio of carotenoid to chlorophyll content to monitor crop physiological and phenological status. International Journal of Applied Earth Observation and Geoinformation, 76(3), 128-142. https://bit.ly/3IptC46.
Published
2022-02-24
How to Cite
Espinoza, J., & Pacheco, H. (2022). Use of an unmanned aerial vehicle as an alternative to assess the nutritional status of the cotton crop. Revista De La Facultad De Agronomía De La Universidad Del Zulia, 39(1), e223919. Retrieved from https://produccioncientificaluz.org/index.php/agronomia/article/view/37758
Section
Crop Production