Microbiota fúngica de paja de caña de azúcar y su capacidad para producir enzimas hidrolíticas

  • Nadia G. Mendoza-Infante Colegio de Postgraduados-Campus Córdoba, Carretera Federal Córdoba-Veracruz Km 348, Congregación Manuel León, Municipio Amatlán de los Reyes, 94946 Veracruz, México. https://orcid.org/0000-0002-7933-4219
  • Héctor Debernardi de la Vequia Colegio de Postgraduados-Campus Córdoba, Carretera Federal Córdoba-Veracruz Km 348, Congregación Manuel León, Municipio Amatlán de los Reyes, 94946 Veracruz, México. https://orcid.org/0000-0002-5417-5282
  • Juan V. Hidalgo-Contreras Colegio de Postgraduados-Campus Córdoba, Carretera Federal Córdoba-Veracruz Km 348, Congregación Manuel León, Municipio Amatlán de los Reyes, 94946 Veracruz, México. https://orcid.org/0000-0002-4300-7777
  • Violeta Múgica-Álvarez Química Aplicada, Universidad Autónoma Metropolitana, Unidad Azcapotzalco, Av. San Pablo 180, 02200 México, DF, México https://orcid.org/0000-0003-2394-041X
  • Ricardo Hernández-Martínez CONACYT-Colegio de Postgraduados-Campus Córdoba, Carretera Federal Córdoba-Veracruz Km 348, Congregación Manuel León, Municipio Amatlán de los Reyes, 94946 Veracruz, México https://orcid.org/0000-0002-3604-4668
Palabras clave: Saccharum officinarum, Trichoderma, hongos, celulasas, xilanasas

Resumen

La microbiota presente en la paja de caña de azúcar (Saccharum officinarum L.) puede tener beneficios para la producción de cultivos sostenibles, también, puede utilizarse en el desarrollo de procesos alternos que permitan producir moléculas de interés industrial y al mismo tiempo valorizar biomasa y residuos no aprovechados. El objetivo del presente trabajo fue aislar la microbiota fúngica presente en la paja de caña de azúcar (CP 72-2082) y su capacidad para producir enzimas hidrolíticas. La microbiota fúngica fue aislada muestreando una vez por mes durante cuatro meses la paja en campos del ingenio “El Potrero” en el estado de Veracruz, México, también se muestreó suelo para determinar el efecto del ahile de la paja sobre el contenido de materia orgánica. Asimismo, se determinó la capacidad de las cepas para la producción de xilanasas y celulasas en caja Petri utilizando xilano de abedul y carboximetilcelulosa como substratos. En los cuatro muestreos realizados, se aislaron 34 cepas, identificándose en todos, el género Trichoderma, Fusarium en tres de ellos y Aspergillus y Penicillum en dos. Los resultados indican que la reincorporación de la paja de caña en los suelos donde es cultivada caña de azúcar puede tener impacto benéfico, encontrándose que 22 de las cepas aisladas, mostraron la capacidad de producción de enzimas hidrolíticas. El contenido de materia orgánica, en los suelos donde se tenían residuos de cosecha ahilados y no ahilados, demostró que el ahile no presenta un beneficio al suelo, pero puede aportar microbiota fúngica benéfica para diversos objetivos.

Descargas

La descarga de datos todavía no está disponible.

Citas

Adesina, F. & Onilude, A. (2013). Isolation, identification and screening of xylanase and glucanase-producing microfungi from degrading wood in Nigeria. African Journal of Agricultural Research, 8(34), 4414-4421. https://cutt.ly/Inh57Dh
Agudelo, J, Merchán, Z., Zapata, N., y Muñoz, O. (2013). Evaluación de las enzimas celulolíticas producidas por hongos nativos mediante fermentación en estado sólido (SSF) utilizando residuos de cosecha de caña de azúcar. Revista Colombiana de Biotecnología, 15(1), 108-117. https://cutt.ly/2nh54yM
Armanhi, J., de Souza, R., Damasceno, N., de Araújo, L., Imperial, J. & Arruda, P. (2018). A community-based culture collection for targeting novel plant growth-promoting bacteria from the sugarcane microbiome. Frontiers in Plant Science, 8, 2191. https://doi.org/10.3389/fpls.2017.02191
Barnett, H. & Hunter, B. (1972). Illustrated genera of imperfect fungi. Illustrated genera of imperfect fungi (3rd ed). Burges Publishing Company.
Batista-García, R., Balcázar-López, E., Miranda-Miranda, E., Sánchez-Reyes, A., Cuervo-Soto, L., Aceves-Zamudio, D. & Folch-Mallol, J. (2014). Characterization of lignocellulolytic activities from a moderate halophile strain of Aspergillus caesiellus isolated from a sugarcane bagasse fermentation. PLoS One, 9(8), e105893. https://doi.org/10.1371/journal.pone.0105893
Bertonha, L., Neto, M., Garcia, J., Vieira, T., Castoldi, R., Bracht, A. & Peralta, R. (2018). Screening of Fusarium sp. for xylan and cellulose hydrolyzing enzymes and perspectives for the saccharification of delignified sugarcane bagasse. Biocatalysis and Agricultural Biotechnology, 16, 385-389. https://doi.org/10.1016/j.bcab.2018.09.010
Borges, J., Barrios, M., Sandoval, E., Bastardo, Y. & Márquez, O. (2012). Características físico-químicas del suelo y su asociación con macroelementos en áreas destinadas a pastoreo en el estado Yaracuy. Bioagro, 24(2), 121-126. https://cutt.ly/jnh53mK
Bojórquez-Serrano, J., Castillo Pacheco, L., Hernández Jiménez, A., García Paredes, J. & Madueño-Molina, A. (2015). Cambios en las reservas de carbono orgánico del suelo bajo diferentes coberturas. Cultivos Tropicales, 36(4), 63-69. https://cutt.ly/jnh59Yk
Camassola, M. & Dillon, A. (2010). Cellulases and xylanases production by Penicillium echinulatum grown on sugar cane bagasse in solid-state fermentation. Applied Biochemistry and Biotechnology, 162(7), 1889-1900. https://doi.org/10.1007/s12010-010-8967-3
Cervantes-Preciado, J., Milanés-Ramos, N. & Castillo, M. (2019). Evaluación de 11 híbridos de caña de azúcar (Saccharum spp.) en la region central de Veracruz, México. AGROProductividad, 12(3), 69-74. https://doi.org/10.32854/agrop.v0i0.1085
Comité Nacional para el desarrollo sustentable de la caña de azúcar (CONADESUCA). 2019. Comparativo de días de zafra respecto al primer estimado de los ingenios, Ciudad de México: Comité Nacional para el Desarrollo Sustentable de la Caña de Azúcar. Fecha de consulta: agosto 2020.
Dela-Cueva, F., De Torres, R., de Castro, A., Mendoza, J. & Balendres, M. (2019). Susceptibility of sugarcane to red rot caused by two Fusarium species and its impact on stalk sugar level. Journal of Plant Pathology, 101(3). https://doi.org/10.1007/s42161-019-00253-2
Dhakar, K., Sharma, A. & Pandey, A. (2014). Cold, pH and salt tolerant Penicillium spp. inhabit the high altitude soils in Himalaya, India. World Journal of Microbiology and Biotechnology, 30(4), 1315-1324. https://doi.org/10.1007/s11274-013-1545-4
De Souza, R., Okura, V., Armanhi, J., Jorrín, B., Lozano, N., Da Silva, M. & Arruda, P. (2016). Unlocking the bacterial and fungal communities assemblages of sugarcane microbiome. Scientific Reports, 6(1), 1-15. https://doi.org/10.1038/srep28774
Deshmukh, R., Dange, S., Jadhav, P., Deokule, S. & Patil, N. (2013). Studies on the mycoflora in the rhizosphere of sugarcane (Saccharum officinarum L.). International Journal of Bioassays, 2(4), 674-676. https://cutt.ly/enh50ew
Elias, F., Woyessa, D. & Muleta, D. (2016). Phosphate solubilization potential of rhizosphere fungi isolated from plants in Jimma Zone, Southwest Ethiopia. International Journal of Microbiology, 2016, 1-11. https://doi.org/10.1155/2016/5472601
Farinas, C. (2015). Developments in solid-state fermentation for the production of biomass-degrading enzymes for the bioenergy sector. Renewable and Sustainable Energy Reviews, 52, 179-188. https://doi.org/10.1016/j.rser.2015.07.092
Florencio, C., Couri, S. & Farinas, C. (2012). Correlation between agar plate screening and solid-state fermentation for the prediction of cellulase production by Trichoderma strains. Enzyme research, 2012. https://doi.org/10.1155/2012/793708
Florencio, C., Cunha, F., Badino, A. & Farinas, C. (2015). Validation of a novel sequential cultivation method for the production of enzymatic cocktails from Trichoderma strains. Applied Biochemistry and Biotechnology, 175(3), 1389-1402. https://doi.org/10.1007/s12010-014-1357-5
Gong, W., Zhang, H., Liu, S., Zhang, L., Gao, P., Chen, G. & Wang, L. (2015). Comparative secretome analysis of Aspergillus niger, Trichoderma reesei, and Penicillium oxalicum during solid-state fermentation. Applied Biochemistry and Biotechnology, 177(6), 1252-1271. https://doi.org/10.1007/s12010-015-1811-z
Graham, M., Haynes, R. & Meyer, J. (2002). Soil organic matter content and quality: effects of fertilizer applications, burning and trash retention on a long-term sugarcane experiment in South Africa. Soil Biology and Biochemistry, 34(1), 93-102. https://doi.org/10.1016/S0038-0717(01)00160-2
Hsuan, H., Salleh, B. & Zakaria, L. (2011). Molecular identification of Fusarium species in Gibberella fujikuroi species complex from rice, sugarcane and maize from Peninsular Malaysia. International Journal of Molecular Sciences, 12(10), 6722-6732. https://doi.org/10.3390/ijms12106722
Joshi, D., Singh, P., Singh, A., Lal, R. & Tripathi, N. (2016). Antifungal potential of metabolites from Trichoderma sp. against Colletotrichum falcatum went causing red rot of sugarcane. Sugar Tech, 18(5), 529-536. https://doi.org/10.1007/s12355-015-0421-y
Kannangara, S. & Dharmarathna, R. M. (2017). Isolation, identification and characterization of Trichoderma species as a potential biocontrol agent against Ceratocystis paradoxa. The Journal of Agricultural Science, 12(1): 51-62. http://doi.org/10.4038/jas.v12i1.8206
Kaushal, R., Sharma, N. & Tandon, D. (2012). Cellulase and xylanase production by co-culture of Aspergillus niger and Fusarium oxysporum utilizing forest waste. Turkish Journal of Biochemistry, 37(1). http://doi.org/10.5505/tjb.2012.43434
Lacerda, L., Gusmão, L. & Rodrigues, A. (2018). Diversity of endophytic fungi in Eucalyptus microcorys assessed by complementary isolation methods. Mycological Progress, 17(6), 719-727. https://doi.org/10.1007/s11557-018-1385-6
Lizardi-Jiménez, M., Ricardo-Díaz, J., Quiñones-Muñoz, T., Hernández-Rosas, F. & Hernández-Martínez, R. (2019). Fungal strain selection for protease production by solid-state fermentation using agro-industrial waste as substrates. Chemical Papers, 73(10), 2603-2610. https://doi.org/10.1007/s11696-019-00814-w
Mahlanza, T., Rutherford, R., Snyman, S. & Watt, M. (2013). In vitro generation of somaclonal variant plants of sugarcane for tolerance to Fusarium sacchari. Plant cell reports, 32(2), 249-262. https://doi.org/10.1007/s00299-012-1359-0
Marques, N., de Cassia Pereira, J., Gomes, E., da Silva, R., Araújo, A., Ferreira, H.& Bocchini, D. (2018). Cellulases and xylanases production by endophytic fungi by solid state fermentation using lignocellulosic substrates and enzymatic saccharification of pretreated sugarcane bagasse. Industrial Crops and Products, 122, 66-75. https://doi.org/10.1016/j.indcrop.2018.05.022
Martínez, L., Martínez, S. & Cuevas, R. (2013). Efecto de la tierra de diatomeas en las propiedades químicas del suelo en el cultivo de maíz (Zea mays, L.). RIAA, 4(2), 13-26. https://doi.org/10.22490/21456453.984
Panagiotou, G., Kekos, D., Macris, B., & Christakopoulos, P. (2003). Production of cellulolytic and xylanolytic enzymes by Fusarium oxysporum grown on corn stover in solid state fermentation. Industrial crops and products, 18(1), 37-45. https://doi.org/10.1016/S0926-6690(03)00018-9
Quiroz-Guerrero, I. & Pérez, A. (2013). Vinaza y compost de cachaza: efecto en la calidad del suelo cultivado con caña de azúcar. Revista Mexicana de Ciencias Agrícolas, 4(SPE5), 1069-1075. https://cutt.ly/Tnh5nVC
Rahnama, N., Mamat, S., Shah, U., Ling, F., Rahman, N. & Ariff, A. (2013). Effect of alkali pretreatment of rice straw on cellulase and xylanase production by local Trichoderma harzianum SNRS3 under solid state fermentation. BioResources, 8(2), 2881-2896. https://doi.org/10.15376/biores.8.2.2881-2896
Ramírez-Lozano, D., Soria, A., Gutiérrez, B., Baptista, R., Garza, Y. & Gaona Lozano, J. (2016). Producción de enzimas celulolíticas a partir de hongos aislados de muestras ambientales de Cuatro Ciénegas, Coahuila. Mexican Journal of Biotechnology, 1(1), 157-164. https://cutt.ly/Ynh5z7w
Rivera-Cruz, M., Magaña M. y Trujillo A. (2017). Modificaciones en materia orgánica y actividad enzimática del suelo por fuego usado en la quema de caña de azúcar. p. 393-397. En: Seguridad Alimentaria: Aportaciones Científicas y Agrotecnológicas. Primera edición.
Romão-Dumaresq, A., Dourado, M., Fávaro, L., Mendes, R., Ferreira A., & Araújo, W. (2016). Diversity of cultivated fungi associated with conventional and transgenic sugarcane and the interaction between endophytic Trichoderma virens and the host plant. PloS one,11(7), e0158974. https://doi.org/10.1371/journal.pone.0158974
Rozas, H., Echeverria, H., & Angelini, H. (2011). Niveles de carbono orgánico y ph en suelos agrícolas de las regiones pampeana y extrapampeana Argentina. Revista Ciencia del Suelo, 29, 29-37. https://cutt.ly/Znh5kAM
Saif, F., Yaseen, S., Alameen, A., Mane, S. & Undre, P. (2020). Identification of Penicillium Species of Fruits Using Morphology and Spectroscopic Methods. Journal of Physics: Conference Series, 1644(1), 012019. https://doi.org/10.1088/1742-6596/1644/1/012019
Tegene, S., Dejene, M., Terefe, H., Tegegn, G., Tena, E. & Ayalew, A. (2021). Evaluation of native Trichoderma isolates for the management of sugarcane smut (Ustilago scitaminea) in sugar plantations of Ethiopia. Cogent Food & Agriculture, 7(1), 1872853. https://doi.org/10.1080/23311932.2021.1872853
Upadhyay, M., Awasthi, A. & Joshi, D. (2020). Explorando la eficacia del biocontrol de Trichoderma spp. contra Fusarium sacchari, el agente causal de la marchitez de la caña de azúcar. Biotecnología Vegetal, 20(3), 237-247. https://cutt.ly/Mnh5jhI
Yarce, C. & Castillo, J. (2014). Validación no exhaustiva del método analítico de Walkley–Black, para la determinación de materia orgánica en suelos por espectrofotometría de UV-VIS. Ingenium, 8(19), 37-46. https://cutt.ly/Dnh5g03
Youssef, M., Saber, W., El-Taher, E., & El daiem, A. (2016). Isolation and Identification of the Highly Cellulolytic and P-Solubilizing Fungi. Journal of Environmental Sciences, 45(1), 75-84. https://cutt.ly/Gnh5fiL
Zhang, F., Zhao, X. & Bai, F. (2018). Improvement of cellulase production in Trichoderma reesei Rut-C30 by overexpression of a novel regulatory gene Trvib-1. Bioresource Technology, 247, 676-683. https://doi.org/10.1016/j.biortech.2017.09.126
Publicado
2021-12-22
Cómo citar
Mendoza-Infante, N. G., Debernardi de la Vequia, H., Hidalgo-Contreras, J. V., Múgica-Álvarez, V., & Hernández-Martínez, R. (2021). Microbiota fúngica de paja de caña de azúcar y su capacidad para producir enzimas hidrolíticas. Revista De La Facultad De Agronomía De La Universidad Del Zulia, 39(1), e223908. Recuperado a partir de https://produccioncientificaluz.org/index.php/agronomia/article/view/37489
Sección
Producción Vegetal. Crop Production. Produção Vegetal