Potential use of Lupinus exaltatus Zucc. (Leguminosae) as green manure in soils of Jalisco, Mexico

  • Juan Francisco Zamora Natera Departamento de Botánica y Zoología. Centro Universitario de Ciencias Biológicas y Agropecuarias. Universidad de Guadalajara. México http://orcid.org/0000-0002-8550-4616
  • Isidro Zapata Hernández Estudiante del Doctorado en Ciencias en Biosistemática, Ecología y Manejo de Recursos Naturales y Agrícolas. Universidad de Guadalajara, México https://orcid.org/0000-0003-1732-7993
Keywords: lupine, biomass, decomposition, nutrient release, N mineralization

Abstract

The environmental impact generated by agriculture with excessive use of fertilizers has led to the search for alternatives to improve soil fertility. This study aimed to evaluate the potential of Lupinus exaltatus in terms of decomposition and mineralization of nitrogen (N) when incorporated into the soil as green manure (GM) and its effect on the growth of Triticum aestivum L. seedlings. Litter bags were used, with a total of 216 nylon bags (10 × 5 cm), in each bag were placed 5 g dry base of GM in the vegetative stage and flowering. Subsequently, the GM bags were placed separately Vertisol and Regosol soil at a depth of 5 cm; and every three weeks until the end of the incubation, three bags were recovered per treatment. For evaluation of the effect GM on T. aestivum growth experiment was established in pots with soil Regosol, it consisted of incorporating 50 and 34 g dry base of the GM (equivalent to 10 and 15 t.ha-1). The GM in the vegetative stage lost an average of 83,52 % of its initial weight, while in flowering the loss was 76,49 %, the mineralized N was higher in Regosol soil than in Vertisol with 74,02 % and 70,58 % respectively. The wheat seedlings presented 30 % more dry matter and N with GM than the control treatment. L. exaltatus had a rapid decomposition and mineralization of N in the first stages of incubation.

Downloads

Download data is not yet available.

References

American Society for Testing and Materials (ASTM). 1977. Annual book of ASTM standards. Part 22: wood; adhesives. West Conshohocken, PA, USA. p. 343-345.
Base referencial mundial del recurso suelo (WRB) IUSS Working Group. 2015. Sistema internacional de clasificación de suelos para la nomenclatura de suelos y la creación de leyendas de mapas de suelos. Informes sobre recursos mundiales de suelos. No. 106. Tercera Edición. FAO©. Viale delle Terme di Caracalla, Roma, Italia. 218 p. Disponible en: https://www.iec.cat/mapasols/DocuInteres/PDF/Llibre59.pdf
Bermúdez, T. K., Q. N. Robledo, H. J. Martínez, T. Andreas and M. Wink. 2000. Biodiversity of the genus Lupinus in Mexico. In: Van Santen, E., M. Wink, S. Weissmann y P. Römer (eds). Proceedings 9th International Lupin Conference. International Lupin Association. Klink/Müritz, Germany. p. 294-296.
Bremner, J. M. 1996. Nitrogen-total. In: Methods of Soil Analysis. Part 3. Chemical Methods. (Ed. Sparks DL), p. 1085-1121. SSSA Book Series 5. Soil Science Society of America, Madison, WI. EEUU.
Brunetto, G., M. Ventura, F. Scandellari, C. A. Ceretta, J. Kaminski, G. W. de Melo and M. Tagliavini. 2011. Nutrient release during the decomposition of mowed perennial ryegrass and white clover and its contribution to nitrogen nutrition of grapevine. Nutr. Cycling. Agroecosyst. 90(3):299-308.
Castellano, M. J., J. P. Kaye, H. Lin and J. P. Schmidt. 2012. Linking carbon saturation concepts to nitrogen saturation and retention. Ecosyst. 15(2):175-187.
Celaya-Michel, H. y A. Castellanos-Villegas. 2011. Mineralización de nitrógeno en el suelo de zonas áridas y semiáridas. Terra Latinoam. 29:343-356.
Cobo, J., E. Barrios and R. Delve. 2008. Decomposition and nutrient release from intra-specific mixtures of legume plant materials. Comm. Soil. Sci. Plant. Anal. 39 (3-4):616-625.
Cobo, J., E. Barrios, D. C. Kass and R. Thomas. 2002. Nitrogen mineralization and crop uptake from surface-applied leaves of green manure species on a tropical volcanic-ash soil. Biol. Fertil. Soils. 36(2):87-92.
Cotrufo, M. F., M. D. Wallenstein, C. M. Boot, K. Denef and E. Paul. 2013. The Microbial Efficiency‐Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter?. Glob Chang Biol. 19(4):988-995.
Giller, K. E. 2001. Nitrogen fixation in tropical cropping systems. Second edition. CABI Publishing. Wallingford, UK. 448 p.
LECO. 2010. Organic application notes. Available in: http://www.leco.co.za/wpcontent/uploads/2012/02/CHN2000_PLANT_TISSUE_203-821160.pdf
Lee, J. S., H. J. Lee and J. H. Seo. 2002. Decomposition and N release of hairy vetch applied as a green manure and its effects on rice yield in paddy field. Korean J. Crop. Sci. 47(2):137-141.
Martínez, J., F. Ojeda, I. Yepes y I. Jácome, 1989. Formas de secado en la determinación de la materia seca en el Pennisetum purpureum cv. Taiwan A-144. Past. y Forr. 12(1):59-64.
Matos, E. D. S., E. D. S. Mendonça, I. M. Cardoso, P. C. D. Lima and D. Freese. 2011. Decomposition and nutrient release of leguminous plants in coffee agroforestry systems. Rev. Bras. Cienc. Solo. 35(1):141-149.
Molina, Y., A. Mora, M. Ramos y L. Parra. 2011. Evaluación de dos especies leguminosas como abono verde. Cuenca alta del Río Chama, Mérida, Venezuela. Rev. Forest. Venez. 55(2):183-193.
Monsalve, C. O. I., D J. S. Gutiérrez y W. A. Cardona. 2017. Factores que intervienen en el proceso de mineralización de nitrógeno cuando son aplicadas enmiendas orgánicas al suelo. Una revisión. Rev. Colomb. Cienc. Hortic. 11(1):200-209.
Morales, E. J. M., M. R. Arriaga, J. A. L. Sandoval, Á. R. M. Campos y E. J. M. Rosales. 2019. Urea (NBPT) una alternativa en la fertilización nitrogenada de cultivos anuales. Rev. Mexicana Cienc. Agric. 10(8):1875-1886.
Nevins, C. J., C. Nakatsu and S. Armstrong. 2018. Characterization of microbial community response to cover crop residues. Soil. Biol. Biochem. 123:39-49.
NOM-021-RECNAT-2000 (Norma Oficial Mexicana). 2002. Que establece las especificaciones de fertilidad, salinidad y clasificación de suelos. Estudios, muestreo y análisis. SEMARNAT. México, D. F. 85 p.
Odhiambo, J. J. 2010. Decomposition and nitrogen release by green manure legume residues in different soil types. Afr. J. Agric. Res. 5(1):90-96.
Perdigão, A., J. Pereira, N. Moreira, H. Trindade and J. Coutinho. 2017. Carbon and nitrogen mineralisation from green manures as alternative nitrogen sources in Mediterranean farming. Arch. Agron. Soil. Sci. 63(11):1546-1555.
Pietrzykowski, M., P. Gruba and G. Sproull. 2017. The effectiveness of Yellow lupine (Lupinus luteus L.) green manure cropping in sand mine cast reclamation. Ecol. Eng. 102:72-79.
Saria, A. G., K. P. Sibuga, E. Semu and H. Høgh-Jensen. 2018. Soil Fertility Dynamics of Ultisol as Influenced by Greengram and Mucuna Green Manures. J. Plant. Sci. Agri. Res. 2:1-14.
Shahbaz, M., Y. Kuzyakov, M. Sanaullah, F. Heitkamp, V. Zelenev, A. Kumar and E. Blagodatskaya. 2017. Microbial decomposition of soil organic matter is mediated by quality and quantity of crop residues: mechanisms and thresholds. Biol. Fertil. Soils. 53(3):287-301.
Shindoi, M. M. J., J. Prause y P. L. Jover. 2012. Descomposición de Vigna unguiculata (caupí) en un Argiudol típico de Colonia Benítez, Chaco. RIA. 38(1):86-90.
Servicio Meteorológico Nacional-Comisión Nacional del Agua (SMN-CONAGUA). 2018. https://smn.conagua.gob.mx/es/ Consultado el 15 de noviembre de 2018.
Statgraphics, C. 2014. Statgraphics Centurion XVII. User Manual. Version, 17 (8.0). Herndon, USA.
Thönnissen, C., D. J. Midmore, J. K. Ladha, D. C. Olk and U. Schimidhalter. 2000. Legume decomposition and nitrogen release when applied as green manures to tropical vegetable production systems. Agron. J. 92(2):253-260.
Tighe-Neira, M. R., G. Leonelli, M. Aliaga y M. Rodríguez. 2015. Evaluación de espinillo como abono verde en la producción de biomasa y proteína de acelga. IDESIA. 33(2):137-142.
Villavicencio-Enríquez, L. 2012. Producción, pérdida de peso y tasas de descomposición de hojarasca en cafetales tradicional y rústico, y selva mediana, en Veracruz, México. Rev. Chapingo Ser. Cienc. for. Ambient. 18(2):159-173.
Weisany, W., Y. Raei and K. H. Allahverdipoor. 2013. Role of Some of Mineral Nutrients in Biological Nitrogen Fixation. Bull. Env. Pharmacol. Life Sci. 2(4):77-84.
Wysokinski, A., D. Kalembasa and S. Kalembasa. 2014. Utilization of nitrogen from different sources by spring triticale (Triticosecale Wittm. ex. A. Camus) grown in the stand after yellow lupine (Lupinus luteus L.). Acta Sci. Pol. Agricultura. 13(2):79-92.
Zamora-Natera, J., I. Zapata-Hernández y A. Villalvazo-Hernández. 2019. Fijación biológica del nitrógeno en tres especies silvestres del género Lupinus (Leguminosae, Papilionoideae) en México. Act. Bot. Mex. 126:e1543.
Zapata-Hernández, I., J. Zamora-Natera, M. Trujillo-Tapia y E. Ramírez-Fuentes. 2020. ¿La incorporación de residuos de diferentes especies de Lupinus, como abono verde, afecta la actividad microbiana del suelo?. Terra Latinoam. 38(1):45-56.
Zapata, I., M. R. Rodríguez, L. P. M. García, P. E. Salcedo, R. A. H. Lara and N. J. F. Zamora. 2019. Dry matter yield and nitrogen content in Lupinus spp. (Leguminosae) with potential as a green manure. Legum. Res. 42(4):523-527.
Published
2021-10-01
How to Cite
Zamora Natera, J. F., & Zapata Hernández, I. (2021). Potential use of Lupinus exaltatus Zucc. (Leguminosae) as green manure in soils of Jalisco, Mexico. Revista De La Facultad De Agronomía De La Universidad Del Zulia, 38(4), 825-845. Retrieved from https://produccioncientificaluz.org/index.php/agronomia/article/view/36795
Section
Crop Production