Fitorremediación de aguas contaminadas con arsénico mediante islas flotantes artificiales: revisión bibliográfica / Phytoremediation of arsenic-contaminated waters by artificial floating island: literature review / Fitorremediação de águas contaminadas co

  • Kalina Marcela Fonseca Largo Docente - Investigadora. Coordinador del grupo de investigación: Manejo del Recursos Hídricos, Universidad Técnica de Cotopaxi. Ecuador http://orcid.org/0000-0003-4105-5457
  • Joseline Luisa Ruiz Depablos Investigadora. Universidad Técnica de Cotopaxi, Ecuador http://orcid.org/0000-0002-9936-5215
  • Edgar Fabián Espitia Sarmiento Director de la carrera de Ingeniería en Ciencias del Agua. Universidad Regional Amazónica Ikiam. Ecuador
  • Edward Alexander Campaña Pallasco Egresado de la carrera de Ingeniería en Medio Ambiente de la Universidad Técnica de Cotopaxi http://orcid.org/0000-0001-5811-9379
  • Evelyn Liseth Moreno Chicaiza Egresada de la carrera de Ingeniería en Medio Ambiente de la Universidad Técnica de Cotopaxi http://orcid.org/0000-0003-1902-139X

Abstract

Resumen

El agua es el principal medio a través del cual el arsénico (As) ingresa al cuerpo humano causando daños irreversibles a la salud como envenenamiento, lesiones cutáneas y varios tipos de cánceres. Una estrategia para abordar la contaminación de As en ecosistemas acuáticos, son las islas flotantes artificiales (IFA) usando pasto Vetiver (Chrysopogon zizanioides). El objetivo de este estudio fue revisar 45 publicaciones sobre los fundamentos de construcción, implementación, descripción de mecanismos de descontaminación, caracterización de la especie macrófita y disposición final del material vegetal. También, se revisaron algunos modelos matemáticos que pueden ser aplicados para cuantificar las tasas de remoción y eficiencia del sistema. Con base en la literatura revisada, se concluye que el pasto Vetiver es una alternativa eficaz en la remoción de As y su efecto puede ser amplificado al implementar un lecho flotante artificial. La importancia de esta relativamente nueva ecotecnología requiere que se continúen las investigaciones en el área.

Abstract

Water is the main way arsenic (As) can ge tinto the human body causing irreversible health damage such as poisoning, skin lesions and various types of cancer. One strategy for addressing pollution of arsenic in aquatic ecosystems is artificial floating islands (IFA) using Vetiver grass (Chrysopogon zizanioides). The objective of this study was to review 45 publications on the fundamentals of construction, implementation, description of decontamination mechanisms, characterization of macrophyte species and final disposal of plant material. Also, some mathematical models that can be applied to quantify removal rates and system efficiency were reviewed. Based on the literature reviewed, it is concluded that Vetiver grass is an effective alternative in removing As and its effect can be amplified by implementing an artificial floating bed. The importance of this relatively new ecotechnology requires further research in the field.

Resumo

A água é o principal meio através do qual o arsênico (As) entra no corpo humano, causando danos irreversíveis à saúde, como envenenamentos, lesões na pele e vários tipos de câncer. Uma estratégia para lidar com a contaminação de arsênio em ecossistemas aquáticos são as ilhas flutuantes artificiais (IFA) usando o capim Vetiver (Chrysopogon zizanioides). O objetivo deste estudo foi revisar as publicações 45 sobre os fundamentos da construção, implementação, descrição dos mecanismos de descontaminação, caracterização das espécies de macrófitas e disposição final do material vegetal. Além disso, foram revisados alguns modelos matemáticos que podem ser aplicados para quantificar as taxas de remoção e a eficiência do sistema.  Com base na literatura revisada, conclui-se que a grama Vetiver é uma alternativa eficaz na remoção de As e seu efeito pode ser amplificado através da implementação de um leito flutuante artificial. A importância desta tecnologia ecológica relativamente nova exige que se prossiga a investigação na área.

Downloads

Download data is not yet available.

References

Bundschuh, J., M. Armienta, P. Birkle, P. Bhattacharya, J. Matschullat y A. Mukherjee. 2008. Natural Arsenic in Groundwaters of Latin America. First Edition. CRC Press. London. 782 p.

Charoenlarp K., K. Surakul, P. Winitkhetkamnoun, P. Kanthupthim, P. Panbumrung y S. Udorn. 2016. Textile wastewater treatment using vetiver grass cultivated with floating platform technique. RMUTKJ. 10:51–57.

Colares, G. S., N. Dell’Osbel, P. G. Wiesel, G. A. Oliveira, P. H. Z. Lemos, F. P. da Silva, C. A. Lutterbeck, L. T. Kist y Ê. L. Machado. 2020. Floating treatment wetlands: A review and bibliometric analysis. Sci. Entorno total. 714:136776.

Dinwiddie, E. y X. M. Liu. 2018. Examining the Geologic Link of Arsenic Contamination in Groundwater in Orange County, North Carolina. Front. Earth Sci. 6:111.

He, J. y J. P. Chen. 2014. A comprehensive review on biosorption of heavy metals by algal biomass: Materials, performances, chemistry, and modeling simulation tools. Bioresour. Technol. 160: 67-78.

He, Y., H. Lin, X. Jin, Y. Dong y M. Luo. 2020. Simultaneous reduction of arsenic and cadmium bioavailability in agriculture soil and their accumulation in Brassica chinensis L. by using minerals. Ecotoxicol. Reinar. Saf. 198:110660.

Ismail, I., T. Mostafa, A. Sulaymon y S. Abbas. 2014. Bisorption of heavy metals: A review. JCST. 3:74.

Kusin, F. M., S. N. M. S. Hasan, N. A. Nordin, F. Mohamat-Yusuff y Z. Z. Ibrahim. 2019. Floating Vetiver island (FVI) and implication for treatment system design of polluted running water. Appl. Ecol. Environ. Res. 17(1):497-510.

Ladislas, S., C. Gérente, F. Chazarenc, J. Brisson, y Y. Andrès, 2015. Floating treatment wetlands for heavy metal removal in highway stormwater ponds. Ecol. Ing. 80:85-91.

Lara, S. y R. Navarro. Resultados y Lecciones en Sistema Vetiver para descontaminación de agua y aumento de su disponibilidad para riego. 2017. Fundación para la Innovación Agraria (FIA). Chile. 48p. Disponible en: https://www.opia.cl/static/website/601/articles-87024_archivo_01.pdf. Fecha de consulta: diciembre 2019.

Li, Y., X. Zhu, X. Qi, B. Shu, X. Zhang, K. Li, Y. Wei, F. Hao y H. Wang. 2020. Efficient removal of arsenic from copper smelting wastewater in form of scorodite using copper slag. J. Clean. Prod. 270:122428.

Martínez-Peña, L., y C. López-Candela. 2018. Islas flotantes como estrategia para el establecimiento de plantas acuáticas en el Jardín Botánico de Bogotá. Gestión y Ambiente. 21(1):110-120.

Mathew, M., Sr. C. Rosary. M. Sebastian y S. M. Cherian. 2016. Effectiveness of Vetiver System for the Treatment of Wastewater from an Institutional Kitchen. Procedia Technology. 24:203-209.

Mondal, P., C. B. Majumder y B. Mohanty. 2006. Laboratory based approaches for arsenic remediation from contaminated water: Recent developments. J. Hazard. Mater. 137(1):464-479.

Morales-Simfors, N., J. Bundschuh, I. Herath, C. Inguaggiato, A. T. Caselli, J. Tapia, F. E. A. Choquehuayta, M. A. Armienta, M. Ormachea, E. Joseph y D. L. López. 2019. Arsenic in Latin America: A critical overview on the geochemistry of arsenic originating from geothermal features and volcanic emissions for solving its environmental consequences. Sci. Total Environ. 716:135564.

Ning, R. Y. 2005. Arsenic in Natural Waters. p. 81-83. In: J. H. Lehr y J. Keeley (Eds.). Water Encyclopedia. First edition. John Wiley & Sons, Inc.

Pilon-Smits, E. 2005. Phytoremediation. Annu Rev Plant Biol. 56(1):15-39.

Pincetti-Zúniga, G. P., L. A. Richards, Y. M. Tun, H. P. Aung, A. K. Swar, U. P. Reh, T. Khaing, M. M. Hlaing, T. A. Myint, M. L. Nwe y D. A. Polya. 2020. Major and trace (including arsenic) groundwater chemistry in central and southern Myanmar. Appl. Geochemistry. 115:104535.

Prasad, M. N. V. 2003. Phytoremediation of Metal-Polluted Ecosystems: Hype for Commercialization. Russ. J. Plant Physiol. 50(5):686-701.

Praveen, A., S. Mehrotra y N. Singh. 2019. Mixed plantation of wheat and accumulators in arsenic contaminated plots: A novel way to reduce the uptake of arsenic in wheat and load on antioxidative defence of plant. Ecotoxicol. Environ. Saf. 182:109462.

Ranjan, D., M. Talat y S. H. Hasan. 2009. Biosorption of arsenic from aqueous solution using agricultural residue ‘rice polish’. J. Hazard. Mater. 166(2-3):1050-1059.

Raskin, I. y B. D. Ensley. 2000. Phytoremediation of toxic metals: Using plants to clean up the environment. J. Wiley. 304 p.

Ravenscroft, P., H. y K. S. Richards. 2009. Arsenic pollution: A global synthesis. Wiley-Blackwell. Wiley-Blackwell. RGS-IBG book series. 588 p.

Reddy, K. R., y R. D. DeLaune. 2008. Biogeochemistry of wetlands: Science and applications. CRC Press. 774 p.

Rong, Z., X. Tang, L. Wu, X. Chen, W. Dang y Y. Wang. 2020. A novel method to synthesize scorodite using ferrihydrite and its role in removal and immobilization of arsenic. J. Mater. Res. Technol. 9(3):5848-5857.

Roongtanakiat, N., S. Tangruangkiat y R. Meesat. 2007. Utilization of Vetiver Grass (Vetiveria zizanioides) for Removal of Heavy Metals from Industrial Wastewaters. Sci. Asia. 33(4):397.

Sahmoune, M. N. 2016. The Role of Biosorbents in the Removal of Arsenic from Water. Chem Eng Technol. 39(9):1617-1628.

Samal, K. 2019. Ecological floating bed (EFB) for decontamination of polluted water bodies: Design, mechanism and performance. J Environ Sci Manag. 13: 1-13.

Shu, W. y Xia, H. 2003. Integrated vetiver technique for remediation of heavy metal contamination: potential and practice. In The third international conference on Vetiver. Disponible en: https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.688.7992&rep=rep1&type=pdf. Fecha de consilta: diciembre 2019.

Shukla, A. y S. Srivastava. 2017. Emerging Aspects of Bioremediation of Arsenic. p. 395-407. In: R. Singh y S. Kumar (Eds.). Green Technologies and Environmental Sustainability. Springer International Publishing.

Singh, S., S. Sounderajan, K. Kumar y D. P. Fulzele. 2017. Investigation of arsenic accumulation and biochemical response of in vitro developed Vetiveria zizanoides plants. Ecotoxicol. Environ. Saf. 145:50-56.

Siyar, R., F. D. Ardejani, M. Farahbakhsh, P. Norouzi, M. Yavarzadeh y S. Maghsoudy. 2020. Potential of Vetiver grass for the phytoremediation of a real multi-contaminated soil, assisted by electrokinetic. Chemosphere. 246:125802.

Smolcz, S.U. y V.G. Cortés. 2015. Remediation of boron contaminated water and soil with vetiver phytoremediation technology in Northern Chile. In 6th International Conference on Vetiver (ICV6). Disponible en https://icv-7.com/wp-content/uploads/2019/09/1-S.-Ugalde-Smolcz-Paper.pdf. Fecha de consulta: Mayo 2019.

Srivastava, J., S. Kayastha, S. Jamil, y V. Srivastava. 2008. Environmental perspectives of Vetiveria zizanioides (L.) Nash. Acta Physiol. Plant. 30(4):413-417.

Srivastava, S., P. Suprasanna y S. F. D’Souza. 2012. Mechanisms of Arsenic Tolerance and Detoxification in Plants and their Application in Transgenic Technology: A Critical Appraisal. Int. J. Phytoremediation. 14(5):506-517.

Tanner, C. C., y T. R. Headley. 2011. Components of floating emergent macrophyte treatment wetlands influencing removal of stormwater pollutants. Ecol. Eng. 37: 474-486.

Tharp, R., K. Westhelle y S. Hurley. 2019. Macrophyte performance in floating treatment wetlands on a suburban stormwater pond: Implications for cold climate conditions. Ecol. Eng. 136: 152-159.

Truong P. 2003. Vetiver grass system: Potential applications for soil and water conservation in northern California. Proceedings of the Third International Vetiver Conference, China. Disponible en: http://www.vetiver.org/ICV3-Proceedings/AUS_California.pdf. Fecha de consulta: enero de 2020.

Van der Ent, A., A. J. M. Baker, R. D. Reeves, A. J. Pollard, y H. Schat. 2013. Hyperaccumulators of metal and metalloid trace elements: Facts and fiction. Plant Soil. 362(1-2):319-334.

Wang, L. K., J. H. Tay, S. T. L. Tay y Y. T. Hung. 2010. Environmental bioengineering. Springer Science & Business Media. New York. 867 p.

Yeh, N., P. Yeh y Y. H. Chang. 2015. Artificial floating islands for environmental improvement. Renew. Sust. Ener. Rev. 47:616-622.

Zhao, F. J., S. P. McGrath, y A. A. Meharg. 2010. Arsenic as a Food Chain Contaminant: Mechanisms of Plant Uptake and Metabolism and Mitigation Strategies. Annu. Rev. Plant Biol. 61(1):535-559.

Zuzolo, D., D. Cicchella, A. Demetriades, M. Birke, S. Albanese, E. Dinelli, A. Lima, P. Valera y B. De Vivo. 2020. Arsenic: Geochemical distribution and age-related health risk in Italy. Environ. Res. 182: 1-17.

Published
2020-12-18
How to Cite
Fonseca Largo, K. M., Ruiz Depablos, J. L., Espitia Sarmiento, E. F., Campaña Pallasco, E. A., & Moreno Chicaiza, E. L. (2020). Fitorremediación de aguas contaminadas con arsénico mediante islas flotantes artificiales: revisión bibliográfica / Phytoremediation of arsenic-contaminated waters by artificial floating island: literature review / Fitorremediação de águas contaminadas co. Revista De La Facultad De Agronomía De La Universidad Del Zulia, 38(1), 199-215. Retrieved from https://produccioncientificaluz.org/index.php/agronomia/article/view/34740
Section
Environment