Aptitud combinatoria y heterosis para el rendimiento, precocidad y altura en genotipos de maíz amarillo / Combining ability and heterosis for yield, precocity and height in yellow maize genotypes / Aptidão combinatória e heterose para produtividade, precocidade e altura em genótipos de milho amarelo.
Abstract
Resumen
El objetivo del presente estudio fue determinar la aptitud combinatoria general (ACG), aptitud combinatoria especifica (ACE) y la heterosis en líneas endogámicas de maíz amarillo y sus cruzas para el rendimiento de grano, altura de planta y mazorca y días a la floración masculina y femenina. Seis líneas endogámicas provenientes del CIMMYT, sus cruzamientos directos y cuatro testigos fueron evaluados en la UNALM durante 2016-2018, bajo un diseño de látice 5 x 5 con cuatro repeticiones. Los efectos de ACG y ACE se calcularon con el método II, modelo I de Griffing. La heterosis se midió con base en la media y el mejor parental. El análisis combinado de años mostró significancia (p≤0,01) para: genotipos por años para días a la floración masculina y femenina; ACG por años para días a la floración masculina y ACE por años para días a la floración femenina. Los efectos de ACG para el rendimiento de grano fueron significativos en las líneas CML 229 y CML 428, para altura de planta, mazorca y precocidad, destacó la línea CML 487. El efecto de ACE fue superior en la cruza CML 453 x CML 486 para el carácter rendimiento de grano. Fue mayor la heterosis para el rendimiento de grano en los cruzamientos CML 229 x CML 453 y CML 453 x CML 487. La relación ACG/ACE evidenció efectos de genes aditivos en la altura de plantas, días a la floración masculina y femenina, por tanto, para rendimiento en grano y altura de mazorca gobernaron los efectos no aditivos.
Abstract
The objective of the present study was to determine the general combinatorial aptitude (GCA), specific combinatorial aptitude (SCA) and heterosis in inbred lines of yellow maize and its crosses for, the yield of grain, height of plant and ear and days to male and female flowering. Six inbred lines from CIMMYT, their direct crosses and four controls were evaluated at UNALM during 2016-2018, under a 5 x 5 lattice design with four repetitions. The effects of GCA and SCA were calculated using method II, model I of Griffing. Heterosis was measured based on the mean and best parent. Heterosis was measured based on the mean and best parent. The combined analysis of years showed significance (p ≤ 0.01) in: genotypes by years for days to male and female flowering; GCA for years for days to male flowering and SCA for years for days to female flowering. The effects of ACG for grain yield were significant in lines CML 229 and CML 428, for plant height, precocity, ear and precocity CML 487 line highlighted. The effect of ACE was superior in the cross CML 453 x CML 486 for the grain yield character. Heterosis was higher for the grain yield in the CML 229 x CML 453 and CML 453 x CML 487 crosses. The GCA / SCA relationship evidenced effects of additive genes on plant height, days to male and female flowering, therefore, for grain yield and ear height, non-additive effects governed.
Resumo
O objetivo do presente estudo foi determinar a aptidão combinatória geral (ACG), aptidão combinatória específica (ACE) e heterose em linhagens de milho amarelo e seus cruzamentos para o rendimento de grãos, altura de planta e espiga e dias para o florescimento masculino e feminino. Seis linhagens consanguíneas do CIMMYT, seus cruzamentos diretos e quatro controles foram avaliados na UNALM durante o período de 2016-2018, sob um design latice 5 x 5 com quatro repetições. Os efeitos de ACG e ACE foram calculados usando o método II, modelo I de Griffing. A heterose foi mensurada com base na média e no melhor progenitor. A análise combinada dos anos mostrou significância (p≤0,01) em: genótipos por ano, durante dias, para floração masculina e feminina; ACG por anos durante dias até a floração masculina e ACE por anos durante dias até a floração feminina. Os efeitos do ACG no rendimento de grãos foram significativos nas linhagens CML 229 e CML 428, destacando-se altura da planta, orelha e precocidade, destacando-se a linha CML 487. O efeito da ECA foi superior no cruzamento CML 453 x CML 486 para o caráter de rendimento de grãos. A heterose foi maior para a produtividade de grãos nos cruzamentos CML 229 x CML 453 e CML 453 x CML 487. A relação ACG / ACE evidenciou efeitos de genes aditivos na altura das plantas, nos dias de floração masculina e feminina, portanto, para o rendimento de grãos e a altura da espiga, os efeitos não aditivos regiam.
Downloads
References
Abdel-Moneam, M.A., Attia, A.N., El-Emery, M.I., and Fayed, E.A. 2009. Combining ability and heterosis for some agronomic traits in crosses of maize. Pak. J. Biol. Sci. 12: 433-438. Disponible en: https://scialert.net/abstract/?doi=pjbs.2009.433.438.
Ali, S., Khan, N.U., Khalil, I.H., Iqbal, M., Gul, S., Ahmed, S., Ali, N., Sajjad, M., Afridi, K., Ali, I., and Khan S.M. 2017. Environment effects for earliness and grain yield traits in F1 diallel populations of maize (Zea mays L.). J. Sci. Food Agric. 97: 4408–4418. Disponible en: https://doi.org/https://doi.org/10.1002/jsfa.8420.
Aslam, M., Sohail, Q., Maqbool, M.A., Ahmad, S., and Shahzad, R. 2017. Combining ability analysis for yield traits in diallel crosses of maize. J. Anim. Plant Sci. 27(1): 136–143. Disponible en: http://www.thejaps.org.pk/docs/v-27-1/18.pdf.
Baker, R.J. 1978. Issues in diallel analysis. Crop Sci. 18 (4):533-536. Disponible en: https://doi.org/10.2135/cropsci1978.0011183X001800040001x.
Begum, S., Alam, S.S., Omy, S.H., Amiruzzaman, M., and Rohman, M.M. 2018. Inheritance and combing ability in maize using a 7x7 diallel cross. J. Plant Breed. Crop Sci. 10 (9):239–248. Disponible en: https://academicjournals.org/JPBCS.
Bertoia, L.M., and Aulicino, M.B. 2014. Maize forage aptitude: Combining ability of inbred lines and stability of hybrids. Crop J. 2 (6): 407–418. Disponible en: https://doi.org/10.1016/j.cj.2014.07.002.
Bhavana, P., Singh, R.P., and Gadag, R.N. 2011. Gene action and heterosis for yield and yield components in maize (Zea mays). Indian J. Agric. Sci. 81 (2):163–166.
Borghi, M.L., Ibañez, M.A., Bonamico, N.C., Kandus, M.V., Gomar, D.A., Guillin, E.A., Salerno, J.C., and Di Renzo, M.A. 2012. Combining ability of flint corn inbred lines: Mal de Río Cuarto disease tolerance and grain yield. Phyton, Int. J. Exp. Bot 81:123–131. Disponible en: http://www.revistaphyton.fund-romuloraggio.org.ar/vol81.html.
Chuquija, J.C., y Huanuqueño, E.H. 2015. Comportamiento de ocho poblaciones de maíz amarillo (Zea mays L.) en cruzas con un probador. Anales Científicos. 76(1): 78–86. Disponible en: http://revistas.lamolina.edu.pe/index.php/acu/article/view/767/735.
Dezfouli, P.M., Sedghi, M., Shariatpanahi, M.E., Niazian, M., and Alizadeh, B. 2019. Assessment of general and specific combining abilities in doubled haploid lines of rapeseed (Brassica napus L.). Ind. Crops Prod. 141:111754. Disponible en: https://doi.org/10.1016/j.indcrop.2019.111754.
Ertiro, B.T., Beyene, Y., Das, B., Mugo, S., Olsen, M., Oikeh, S., Juma, C., Labuschagne, M., and Prasanna, B.M. 2017. Combining ability and testcross performance of drought‐tolerant maize inbred lines under stress and non‐stress environments in Kenya. Plant Breed. 136 (2):197–205. Disponible en: https://doi.org/10.1111/pbr.12464.
Food and Agriculture Organization (FAO). 2017. Datos de cultivos. Disponible en: http://www.fao.org/faostat/en/#data/QC. Fecha de consulta: mayo 2019.
Fasahat, P., Rajabi, A., Rad, J.M., and Derera, J. 2016. Review article: Principles and utilization of combining ability in plant breeding. Biom. Biostat. Int. J. 4 (1): 1-22. Disponible en: https://doi.org: 10.15406/bbij.2016.04.00085.
Ghosh, H., and Das, A. 2003. Optimal diallel cross designs for estimation of heritability. J. Stat. Plan. Inference 116 (1):185–196. Disponible en: https://doi.org/10.1016/S0378-3758(02)00180-5.
Griffing, B. 1956. Concept of general and specific combining ability in relation to diallel crossing systems. Aust. J. Biol. Sci. 9(4):463-493. Disponible en: https://doi.org/10.1071/BI9560463.
Guzmán, M., Díaz, D., Ramis, C., Figueroa-Ruiz, R., and Jiménez, R. 2017. Estimación de la aptitud combinatoria y heterosis en híbridos no convencionales de maíz con alto contenido de proteína. Bioagro, 29(3), 175–184. Disponible en: https://www.redalyc.org/pdf/857/85752807003.pdf.
Hallauer, A.R., Carena, M.J., and Filho, J.B.M. 2010. Quantitative genetics in maize breeding. Handbook of Plant Breeding, vol 6. Springer, New York, NY.477 p. Disponible en: https://doi.org/10.1007/978-1-4419-0766-0_1.
Hochholdinger, F., and Baldauf, J. A. 2018. Heterosis in plants. Curr. Biol. 28 (18): R1089–R1092. Disponible en: https://www.sciencedirect.com/science/article/pii/S0960982218308327.
Hoque, M., Akhter, F., Kadir, M., Begum, H., and Ahmed, S. 2016. Study on combining ability and heterosis for earliness and short statured plant in maize. Bangladesh J. Agric. Res. 41 (2): 365–376. Disponible en: https://doi.org/10.3329/bjar.v41i2.28238.
Hosana, G.C., Alamerew, S., Ertiro, B.T., and Menamo, T.M. 2015. Test cross performance and combining ability of maize (Zea mays L.) inbred lines at Bako, Western Ethiopia. Glob. J. INC.(USA) 15 (4): 1-25. Disponible en: https://globaljournals.org/GJSFR_Volume15/1-Test-Cross-Performance-and-Combining.pdf.
Larièpe, A., Moreau, L., Laborde, J., Bauland, C., Mezmouk, S., Décousset, L., Mary-Huard, T., Fiévet, J., Gallais, A. Dubreuil, P., and Charcosset, A. 2017. General and specific combining abilities in a maize (Zea mays L.) test-cross hybrid panel: relative importance of population structure and genetic divergence between parents. Theor. Appl. Genet. 130: 403–417. Disponible en: https://doi.org/10.1007/s00122-016-2822-z.
Makumbi, D., Betrán, J.F., Bänziger, M., and Ribaut, JM. 2011. Combining ability, heterosis and genetic diversity in tropical maize (Zea mays L.) under stress and Ën-stress conditions. Euphytica 180: 143–162. Disponible en: https://link.springer.com/article/10.1007/s10681-010-0334-5.
Maqbool, M.A., Aslam, M., Ali, H., Shah, T.M., and Atta, B.M. 2015. GGE biplot analysis based selection of superior chickpea (Cicer arietinum L.) inbred lines under variable water environments. Pak. J. Bot. 47 (5): 1901–1908. Disponible en: http://www.pakbs.org/pjbot/PDFs/47(5)/38.pdf.
Mather, K., and Jinks, J.L. 1982. Biometrical genetics: The study of continuous variation. Springer, New York, NY. 263 p. Disponible en: https://doi.org/10.1007/978-1-4899-3406-2.
Ministerio de Agricultura y Riego (MINAGRI). 2017. Serie de estadísticas de producción agrícola. Lima, Perú. Disponible en: http://frenteweb.minagri.gob.pe/sisca/. Fecha de consulta: mayo 2019.
Ministerio de Agricultura y Riego (MINAGRI). 2019. Boletín de maíz amarillo duro. Lima, Perú. Disponible en: https://www.minagri.gob.pe/portal/boletin-de-maiz-amarillo-duro/maiz-2019. Fecha de consulta: junio 2020.
Miyaji, N. and Fujimoto, R. 2018. Chapter Eight-Hybrid Vigor: Importance of Epigenetic Processes and Consequences for Breeding. Adv. Bot. Res. 88: 247–275. Disponible en: https://doi.org/10.1016/bs.abr.2018.10.001.
Moradi, M. 2014. Combining ability for grain yield and some important agronomic traits in Maize (Zea mays L.). Int. J. Biosci 5 (4): 177–185. Disponible en: https://dx.doi.org/10.12692/ijb/5.4.177-185.
Moterle, L.M., Braccini, A.L., Scapim, C.A., Pinto, R.J., Gonçalves, L.S., do Amaral Júnior, A.T., and Silva, T.R. 2011. Combining ability of tropical maize lines for seed quality and agronomic traits. Genet. Mol. Res. 10 (3): 2268–2278. Disponible en: http://dx.doi.org/10.4238/vol10-3gmr1129.
Mutlag, N.A., Fayyad, S.A., AbdulHamed, Z.A., and Ibraheem, M.M. 2018. Estimation of hybrid vigour, combining ability and gene action using (line x tester) analysis in maize. Iraqi J. Agric. Sci. 49 (5): 740-747. Disponible en: http://ufds.uofallujah.edu.iq/dspace/handle/123456789/821.
Ndhlela, T., Herselman, L., Semagn, K., Magorokosho, C., Mutimaamba, C., and Labuschagne, M. 2015. Relationships between heterosis, genetic distances and specific combining ability among CIMMYT and Zimbabwe developed maize inbred lines under stress and optimal conditions. Euphytica 204: 635–647. Disponible en: https://doi.org/10.1007/s10681-015-1353-z.
Noëlle, M., Richard, K., Vernon, G., Martin, Y., Laouali, M., Liliane, T., and Godswill, N. 2017. Combining ability and gene action of tropical maize (Zea mays L.) inbred lines under low and high nitrogen conditions. J. Agric. Sci. 9 (4): 222–235. Disponible en: https://doi.org/10.5539/jas.v9n4p222.
Owusu, G., Nyadanu, D., Owusu-Mensah, P., Adu Amoah, R., Amissah, S., and Danso, F. 2018. Determining the effect of genotype × environment interactions on grain yield and stability of hybrid maize cultivars under multiple environments in Ghana. Ecol. Genet. Genomics 9: 7–15. Disponible en: https://doi.org/10.1016/j.egg.2018.07.002.
Prasanna, K.S.V.V., and Ratna, B.D. 2016 Combining ability and heterosis in maize (Zea mays L.) for grain yield and yield components. Int. J. Agric. Environ. Biotechnol. 9 (5): 763-772. Disponible en: DOI: 10.5958/2230-732X.2016.00099.1.
Ranum, P., Peña‐Rosas, J.P., and Garcia‐Casal, M.N. 2014. Global maize production, utilization, and consumption. Ann. N. Y. Acad. Sci. 1312: 105–112. Disponible en: https://pubmed.ncbi.nlm.nih.gov/24650320/.
Rovaris, S.R.S., Paterniani, M.Z., and Sawazaki, E. 2014. Combining ability of white corn genotypes with two commercial hybrids. Maydica 59: 96–103. Disponible en: https://journals-crea.4science.it/index.php/maydica/article/view/974/834.
Servicio Nacional de Meteorología e Hidrología del Perú (SENAMHI). 2018. Datos meteorológicos del distrito La Molina-Lima. Disponible en: http://www.senamhi.gob.pe. Fecha de consulta: julio 2019.
Sprague, G., and Tatum, L. 1942. General vs. specific combining ability in single crosses of corn 1. Agron. J. 34: 923–932. Disponible en: https://dl.sciencesocieties.org/publications/aj/pdfs/34/10/AJ0340100923.
Statitical Analisys System. SAS® 2014. User`s Guide. Statistics.8.0 Version. SAS Institute Inc. Cary.SAS help and Documentation. North Carolina
Tajwar, I., and Chakraborty, M. 2013. Combining ability and heterosis for grain yield and its components in maize inbreds over environments (Zea mays L.). African J. Agric. Res. 8 (25): 3276–3280. Disponible en: https://academicjournals.org/journal/AJAR/article-abstract/88A51F835899.
Zhang, X., Lv, L., Lv, C., Guo, B., and Xu, R. 2015. Combining Ability of Different Agronomic Traits and Yield Components in Hybrid Barley. PLoS One 10 (6): e0126828. Disponible en: https://doi.org/10.1371/journal.pone.0126828.