Efectividad del extracto etanólico de Lippia palmeri Wats para el manejo de Fusarium spp. en semillas de garbanzo / Effectiveness of ethanolic extract of Lippia palmeri Wats for the management of Fusarium spp. in chickpea sedes / Efetividade do extrato etanólico de Lippia palmeri Wats no manejo de Fusarium spp. em sementes de grão de bico

  • Mirella Romero-Bastidas Departamento Académico de Agronomía, Universidad Autónoma de Baja California Sur. Carretera al sur km 5.5, Col. El Mezquitito. 23080, La Paz, Baja California Sur. México. http://orcid.org/0000-0002-6906-4243
  • Juan José Reyes-Perez Universidad Técnica Estatal de Quevedo. Av. Walter Andrade. km 1,5 vía a Santo Domingo, Quevedo, Los Ríos, Ecuador. http://orcid.org/0000-0001-5372-2523
  • Esli Alexis Mayer-Felix Departamento Académico de Agronomía, Universidad Autónoma de Baja California Sur. Carretera al sur km 5.5, Col. El Mezquitito. 23080, La Paz, Baja California Sur. México. http://orcid.org/0000-0002-8944-3806
  • José Saúl Hernandez-Rubio Departamento Académico de Agronomía, Universidad Autónoma de Baja California Sur. Carretera al sur km 5.5, Col. El Mezquitito. 23080, La Paz, Baja California Sur. México. http://orcid.org/0000-0001-5852-4008
  • Pablo Misael Arce-Amezquita Departamento Académico de Agronomía, Universidad Autónoma de Baja California Sur. Carretera al sur km 5.5, Col. El Mezquitito. 23080, La Paz, Baja California Sur. México. http://orcid.org/0000-0002-7938-9084
  • Luis Guillermo Hernandez-Montiel Centro de Investigaciones Biológicas del Noroeste. Calle Instituto Politécnico Nacional 195. Col. Playa Palo de Santa Rita Sur. 23096, La Paz, Baja California Sur, México http://orcid.org/0000-0002-8236-1074

Abstract

Resumen

El garbanzo es un cultivo de importancia mundial debido a su valor nutricional, sin embargo, la cosecha se ve afectada por enfermedades en semillas y raíz ocasionadas por Fusarium spp., y para su control se aplican fungicidas sintéticos, por lo que los productos naturales basados en extractos de plantas pueden ser una opción para el manejo sustentable de enfermedades de este cultivo. El objetivo de esta investigación fue determinar la eficiencia in vitro e in vivo del extracto etanólico de Lippia palmeri para el control de Fusarium oxysporum y F. solani en semillas de garbanzo. Al medio PDA se le añadió 500, 1000 y 2000 ppm del extracto etanólico de L. palmeri más un disco de agar de cada patógeno y se midió la inhibición del crecimiento micelial. Semillas de garbanzo fueron sumergidas en cada concentración de L. palmeri por cinco y 10 min, posteriormente, cada semilla se inoculó con F. oxysporum y F. solani y se determinó la incidencia de la enfermedad y el número de semillas germinadas. Las tres concentraciones de L. palmeri inhibieron in vitro a ambos patógenos. En las semillas, el extracto etanólico de L. palmeri disminuyó la incidencia de F. solani y mantuvo por encima del 80 % la germinación. Para F. oxysporum solo la dosis más alta del extracto etanólico y el mayor tiempo de exposición disminuyó 20 % la incidencia y la germinación fue menor de 25 %. El extracto etanólico de L. palmeri puede ser una opción para disminuir enfermedades ocasionas por hongos fitopatógenos del suelo en semillas de garbanzo.

Abstract

Chickpea is a crop of world importance due to its nutritional value; however, seed and root diseases caused by Fusarium spp affect the harvest and for its control, synthetic fungicides are applied; nevertheless, natural products based on plant extracts may be an option for the sustainable management of this crop diseases. The objective of this research was to determine the in vitro and in vivo efficiency of the Lippia palmeri  extract for the control of Fusarium oxysporum and F. solani in chickpea seeds. To PDA media, 500, 1000 and 2000 ppm from ethanolic extract of L. palmeri plus one agar disc of each pathogen, and the inhibition of mycelial growth was quantified. Chickpea seeds were submerged in each concentration of L. palmeri for 5 and 10 min, later, each seed was inoculated with F. oxysporum and F. solani and the disease incidence and germinated seeds were determined. The three concentrations of L. palmeri inhibited both phytopathogens in vitro. In the seeds, L. palmeri ethanolic extract decreased the incidence of F. solani and kept germination above 80%. For F.oxysporum only the highest dose of the ethanolic extract and the longest exposure time decreased the incidence by 20 % and germination was less than 25 %.The ethanolic extract of L. palmeri can be an option to decrease diseases caused by phytopathogenic funguses of the soil in chickpea seeds.

Resumo

O grão-de-bico é uma cultura de importância global devido ao seu valor nutricional; no entanto, a cultura é afetada por doenças de sementes e raízes causadas por Fusarium spp. E são aplicados fungicidas sintéticos para controlá-lo, portanto, produtos naturais à base de nos extratos vegetais, podem ser uma opção para o manejo sustentável das doenças dessa cultura. O objetivo desta investigação foi determinar a eficiência in vitro e in vivo do extrato etanólico de Lippia palmeri para o controle de Fusarium oxysporum e F. solani em sementes de grão de bico. Ao meio PDA, 500, 1000 e 2000 ppm do extrato etanólico de L. palmeri mais um disco de ágar de cada patógeno foram adicionados e a inibição do crescimento micelial foi medida. Sementes de grão-de-bico foram imersas em cada concentração de L. palmeri por cinco e 10 minutos e, posteriormente, cada semente foi inoculada com F. oxysporum e F. solani, determinando-se a incidência da doença e o número de sementes germinadas. As três concentrações de L. palmeri inibiram ambos os patógenos in vitro. Nas sementes, o extrato etanólico de L. palmeri diminuiu a incidência de F. solani e manteve a germinação acima de 80 %. Para F. oxysporum, apenas a dose mais alta do extrato etanólico e o maior tempo de exposição diminuíram a incidência em 20 % e a germinação foi menor que 25 %. O extrato etanólico de L. palmeri pode ser uma opção para reduzir doenças causadas por fungos fitopatogênicos do solo em sementes de grão de bico.

Downloads

Download data is not yet available.

References

Andrade-Bustamante, G., L. Cervantes-Díaz, C. Ail-Catzim, C. del Toro-Sánchez, J. Borboa-Flores, P. Preciado-Rangel, F. Martínez-Ruiz y E. Rueda-Puente. 2018. Potential of oregano and cachanilla extracts for the control of phytopathogenic fungi in tomato fruits. ITEA 114(4): 344-352.

Borboa-Flores, J., E. Rueda-Puente, E. Acedo-Félix, J. Ponce, M. Cruz-Villegas, J. García-Hernández y M. Ortega-Nieblas. 2010. Evaluación de la actividad antibacteriana in vitro de aceites esenciales contra Clavibacter michiganensis subespecie michiganensis. Trop. Subtrop. Agroecosyst. 12(3): 539-547.

Daryaei, A., E. Jones, T. Glare y R. Falloon. 2016. Nutrient amendments affect Trichoderma atroviride conidium production, germination and bioactivity. Biol. Control 93: 8-14.

El Hazzat, N., A. Touhami, M. Chliyeh, A. Errifi, K. Selmaoui, R. Benkirane y A. Douira. 2019. Effect of a composite endomycorrhizal inoculum on the manifestation of chickpea wilt, caused by Fusarium solani. Plant Cell Biotech. Mol. Biol. 486-500.

Frac, M., A. Gryta, K. Oszust y N. Kotowicz. 2016. Fast and accurate microplate method (biolog mt2) for detection of Fusarium fungicides resistance/sensitivity. Front. Microbiol. 7(489): 1-16.

Gutiérrez-Grijalva, E., M. Antunes-Ricardo, B. Acosta-Estrada, J. Gutiérrez-Uribe y J. Heredia. 2019. Cellular antioxidant activity and in vitro inhibition of α-glucosidase, α-amylase and pancreatic lipase of oregano polyphenols under simulated gastrointestinal digestion. Food Res. Int. 116: 676-686.

Iqbal, J., B. Abbasi, T. Mahmood, S. Kanwal, R. Ahmad y M. Ashraf. 2019. Plant-extract mediated green approach for the synthesis of ZnONPs: Characterization and evaluation of cytotoxic, antimicrobial and antioxidant potentials. J. Mol. Struct. 1189: 315-327.

Lattanzio, V., V. Lattanzio y A. Cardinali. 2006. Role of phenolics in the resistance mechanisms of plants against fungal pathogens and insects. Phytochemistry: Advances in Research, ISBN: 81-308-0034-9 Editor: Filippo Imperato. Research Signpost 37/661 (2), Fort P.O., Trivandrum-695 023, Kerala, India. Pp- 23-67.

Leyva-López, N., V. Nair, W. Bang, L. Cisneros-Zevallos y J. Heredia. 2016. Protective role of terpenes and polyphenols from three species of oregano (Lippia graveolens, Lippia palmeri and Hedeoma patens) on the suppression of lipopolysaccharide-induced inflammation in RAW 264.7 macrophage cells. J. Ethnopharmacol. 187: 302-312.

Melo, P., E. Alves, C. Martins, A. Anjos Neto, K. Pinto, L. Araújo, C. Vieira y L. Nascimento. 2016. Extracts of Caesalpinia ferrea and Trichoderma sp. on the control of Colletotrichum sp. transmission in Sideroxylon obtusifolium seeds. Rev. Bras. Plantas Med. 18(2): 494-501.

Mengist, Y., S. Sahile, A. Sintayehu y S. Singh. 2018. Evaluation of chickpea varieties and fungicides for the management of chickpea Fusarium wilt disease (Fusarium oxysporum f.sp. ciceris) at Adet Sick Plot in Northwest Ethiopia. Int. J. Agro. 7.

Morales, J., L. Mendoza y M. Cotoras. 2017. Alteration of oxidative phosphorylation as a possible mechanism of the antifungal action of p‐coumaric acid against Botrytis cinerea. J. Appl. Microbiol. 123(4): 969-976.

Nene, Y., V. Sheila y S. Sharma. 1996. A world list of chickpea and pigeonpea pathogens. (V Edition), ICRISAT, Patancheru (A.P.) India, pp. 1-27.

Oliva-Ortiz, L., T. Velázquez-Alcaraz, R. Sosa-Pérez, L. Partida-Ruvalcaba, T. Díaz-Valdés, J. Arciniega-Ramos y C. López-Orona. 2017. Control de la fusariosis vascular del garbanzo (Cicer arietinum L.) por microorganismos nativos de Sinaloa, México. Agrociencia 51: 683-695.

Onaran, A, y Y. Yanar. 2016. In vivo and in vitro antifungal activities of five plant extracts against various plant pathogens. Egypt. J. Biol. Pest Co. 26(2): 405.

Ortega-Murrieta, P., G. Fierros-Leyva, I. Padilla-Valenzuela, V. Valenzuela-Herrera, J. Acosta-Gallegos, E. Gutiérres-Perez, S. Velarde-Félix y F. Rodríguez-Cota. 2016. Blanoro, nueva variedad de garbanzo blanco de grano extra grande para exportación. Rev. Mex. Cienc. Agríc. 7(1): 209-216.

Ortega-Nieblas, M., M. Robles-Burgueño, E. Acedo-Félix, A. González-León, A. Morales-Trejo y L. Vázquez-Moreno. 2011. Chemical composition and antimicrobial activity of oregano (Lippia palmeri S. Wats) essential oil. Rev. Fitotec. Mex. 34(1): 11-17.

Oyedemi, S., A. Okoh, L. Mabinya, G. Pirochenva y A. Afolayan. 2009. The proposed mechanism of bactericidal action of eugenol, γ-terpineol and γ-terpinene against Listeria monocytogenes, Streptococcus pyogenes, Proteus vulgaris and Escherichia coli. Afr. J. Biotechnol. 8: 1280-1286.

Radulovic, N., P. Blagojevic, Z. Stojanovic-Radic y N. Stojanovic. 2013. Antimicrobial plant metabolites: structural diversity and mechanism of action. Curr. Med. Chem. 20(7): 932-952.

Sankar, P., S. Vanitha, A. Kamalakannan, P. Raju y P. Jeyakumar. 2018. Prevalence of Fusarium oxysporum f. sp. ciceris causing wilt in chickpea and its pathogenic, cultural and morphological characterization. Int. J. Curr. Microbiol. Appl. Sci. 7(2): 1301-1313.

Sankar, P., S. Vanitha, A. Kamalakannan, P. Raju y P. Jeyakumar. 2019. Biological management of Fusarium wilt in chickpea (Cicer arietinum L.) caused by Fusarium oxysporum f. sp. ciceris. Legume Res. 42(6): 838-843.

Sayuri, I., M. Duarte, P. Carmignani, C. Pulcinelli y M. Machado. 2018. Effect of fungal incidence on physiological quality of tobacco seeds used in Brazil. Arq. Ins. Biol. 85: 1-6.

Şesan, T., E. Enache, B. Iacomi, M. Oprea, F. Oancea y C. Iacomi. 2015. Antifungal activity of some plant extracts against Botrytis cinerea Pers. in the blackcurrant crop (Ribes nigrum L.). Acta Sci. Pol-Hortoru. 14(1): 29-43.

Shirazi, M., M. Abid, F. Hussain, A. Abbas y U. Sitara. 2020. Antifungal activity of some medicinal plant extracts against soil-borne phytopathogens. Pak. J. Bot. 52(2): 679-685.

Shuping, D. y J. Eloff. 2017. The use of plants to protect plants and food against fungal pathogens: A review. Afr. J. Tradit. Complement. Altern. Med. 14(4): 120-127.

Soylu, S., H. Yigitbas, E. Soylu y S. Kurt. 2007. Antifungal effects of essential oils from oregano and fennel Sclerotinia sclerotiorum. J. Appl. Microbiol. 103: 1021-1030.

Sunkad, G., H. Deepa, T. Shruthi y D. Singh. 2019. Chickpea wilt: status, diagnostics and management. Indian Phytopathol. 1-9.

Tala, M., M. Ansary, F. Talontsi, T. Kowa, M. Islam y P. Tane. 2018. Anthraquinones and flavanols isolated from the vegetable herb Rumex abyssinicus inhibit motility of Phytophthora capsici zoospores. S. Afr. J. Bot. 115: 1-4.

Tlemsani, M., Z. Fortas, S. Dib y M. Bellahcen. 2020. Inoculation with Streptomyces decreases vascular wilt of chickpea infected by Fusarium oxysporum f. sp. ciceri. South Asian J. Exp. Biol. 9(6): 249-254.

Tornuk, F., I. Ozturk, O. Sagdic, A. Yilmaz y O. Erkmen. 2014. Application of predictive inactivation models to evaluate survival of Staphylococcus aureus in fresh-cut apples treated with different plant hydrosols. Int. J. Food Prop. 17(3): 587-598.

Wang, K., S. Jiang, T. Pu, L. Fan, F. Su y M. Ye. 2018. Antifungal activity of phenolic monoterpenes and structure-related compounds against plant pathogenic fungi. Nat. Prod. Res. 33(10): 1423-1430.

Wang, S., Y. Zheng, F. Xiang, S. Li y G. Yang. 2016. Antifungal activity of Momordica charantia seed extracts toward the pathogenic fungus Fusarium solani L. J. Food Drug Anal. 24(4): 881-887.

Wangkhem, B., M. Rana y K. Jackson. 2019. Exploring the control measures of white rust-organic amendments, botanicals, biocontrol agents and chemicals. J. Pharmacogn. Phytochem. 8(3): 4413-4419.

Published
2020-09-15
How to Cite
Romero-Bastidas, M., Reyes-Perez, J. J., Mayer-Felix, E. A., Hernandez-Rubio, J. S., Arce-Amezquita, P. M., & Hernandez-Montiel, L. G. (2020). Efectividad del extracto etanólico de Lippia palmeri Wats para el manejo de Fusarium spp. en semillas de garbanzo / Effectiveness of ethanolic extract of Lippia palmeri Wats for the management of Fusarium spp. in chickpea sedes / Efetividade do extrato etanólico de Lippia palmeri Wats no manejo de Fusarium spp. em sementes de grão de bico. Revista De La Facultad De Agronomía De La Universidad Del Zulia, 37(4), 368-386. Retrieved from https://produccioncientificaluz.org/index.php/agronomia/article/view/33761
Section
Crop Production