Estrategias alternativas al uso de antibióticos durante la etapa postdestete en cerdos criados en sistemas de producción intensiva

Palabras clave: Control de enfermedades, Producción, Salud pública, Terapia

Resumen

Con el fin de promover la salud animal, se realizó una revisión sobre las estrategias alternativas al uso de antibióticos durante el postdestete en la producción porcina. Se hizo un análisis bibliométrico de artículos publicados en Scopus y Web of Science desde 2000 al 2025 usando VOSviewer y Bibliometrics. El incremento durante últimos cinco años en el número de artículos sugiere la relevancia del uso de alterativas como probióticos, prebióticos y fitobióticos. Los probióticos han mostrado eficacia en restaurar el equilibrio de la microbiota, fortalecer la barrera intestinal y modular la respuesta inmunitaria, mientras que los prebióticos favorecen la proliferación de bacterias beneficiosas y la producción de ácidos grasos de cadena corta. Los fitobióticos contribuyen a la mejora del rendimiento productivo y la salud intestinal debido a sus propiedades antioxidantes, antiinflamatorias y antimicrobianas. No obstante, aún este tipo de estrategias se enfrenta a una serie de desafíos como la variabilidad en la composición de los fitobióticos y la necesidad de estandarizar dosis y combinaciones de compuestos bioactivos. El desarrollo de estas alternativas constituye una estrategia fundamental para reducir el uso de antimicrobianos en la alimentación animal, mejorar el bienestar animal y avanzar hacia sistemas de producción porcina más sostenibles.

Descargas

La descarga de datos todavía no está disponible.

Biografía del autor/a

Yadira Navas, Universidad Técnica de Ambato

Universidad Técnica de Ambato. Facultad de Ciencias Agropecuarias, Campus Querochaca. Cantón Cevallos, provincia de Tungurahua, Ecuador.

Gonzalo Aragadvay-Yungán, Universidad Técnica de Ambato

Universidad Técnica de Ambato. Facultad de Ciencias Agropecuarias, Campus Querochaca. Cantón Cevallos, provincia de Tungurahua, Ecuador.

Carlos Vásquez, Universidad Técnica de Ambato

Universidad Técnica de Ambato. Facultad de Ciencias Agropecuarias, Campus Querochaca. Cantón Cevallos, provincia de Tungurahua, Ecuador.

Citas

Acosta, A., Tirkaso, W., Nicolli, F., Van Boeckel, T. P., Cinardi, G., & Song, J. (2025). The future of antibiotic use in livestock. Nature Communications, 16, 2469. https://doi.org/10.1038/s41467-025-56825-7

Ardakani, Z., Aragrande, M., & Canali, M. (2024). Global antimicrobial use in livestock farming: an estimate for cattle, chickens, and pigs. Animal, 18(2), 101060. https://doi.org/10.1016/j.animal.2023.101060

Barducci, R. S., Santos, A. A. D., Pacheco, L. G., Putarov, T. C., Koch, J. F. A., Callegari, M. A., Dias, C. P., de Carvalho, R. H., & da Silva, C. A. (2024). Enhancing weaned piglet health and performance: the role of autolyzed yeast (Saccharomyces cerevisiae) and β-glucans as a blood plasma alternative in diets. Animals, 14, 631. https://doi.org/10.3390/ani14040631

Bonetti, A., Tugnoli, B., Piva, A., & Grilli, E. (2021). Towards zero zinc oxide: Feeding strategies to manage post-weaning diarrhea in piglets. Animals, 11, 642. https://doi.org/10.3390/ani11030642

Chen, M. C., Chen, S. H., Cheng, C. D., Chung, C. H., Mau, L. P., Sung, C. E., Weng, P. W., Cathy Tsai, Y. W., Shieh, Y. S., Huang, R. Y., & Cheng, W. C. (2023). Mapping out the bibliometric characteristics of classic articles published in a Taiwanese academic journal in dentistry: A scopus-based analysis. Journal of Dental Sciences, 18, 1493–1509. https://doi.org/10.1016/j.jds.2023.03.015

Collier, C. T., Carroll, J. A., Ballou, M. A., Starkey, J. D., & Sparks, J. C. (2011). Oral administration of Saccharomyces cerevisiae boulardii reduces mortality associated with immune and cortisol responses to Escherichia coli endotoxin in pigs. Journal of Animal Science, 89, 52–58. https://doi.org/10.2527/jas.2010-2944

Collins, C. L., Pluske, J. R., Morrison, R. S., McDonald, T. N., Smits, R. J., Henman, D. J., Stensland, I., & Dunshea, F. R. (2017). Post-weaning and whole-of-life performance of pigs is determined by live weight at weaning and the complexity of the diet fed after weaning. Animal Nutrition, 3, 372–379. https://doi.org/10.1016/j.aninu.2017.01.001

Comisión Europea. (2019). Regulation (EU) 2019/4 of the European Parliament and of the Council of 11 December 2018 on the Manufacture, Placing on the Market and Use of Medicated Feed, Amending Regulation (EC) No 183/2005 of the European Parliament and of the Council and Repealing. In Official Journal of the European Union (Vol. L4, Issue 726). https://eur-lex.europa.eu/legal-content/ EN/TXT/PDF/?uri=CELEX:32019R0006&from=EN%0Ahttps://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32019R0006&qid=1552299700950&from=EN

Cui, Q., Fu, Q., Zhao, X., Song, X., Yu, J., Yang, Y., Sun, K., Bai, L., Tian, Y., Chen, S., Jia, R., Zou, Y., Li, L., Liang, X., He, C., Yin, L., Ye, G., Lv, C., Yue, G., & Yin, Z. (2018). Protective effects and immunomodulation on piglets infected with rotavirus following resveratrol supplementation. PLoS ONE, 13(2), e0192692. https://doi.org/10.1371/journal.pone.0192692

Dewulf, J., Joosten, P., Chantziaras, I., Bernaerdt, E., Vanderhaeghen, W., Postma, M., & Maes, D. (2022). Antibiotic Use in European Pig Production: Less Is More. Antibiotics, 11, 1493. https://doi.org/10.3390/antibiotics11111493

Duan, Q., Chen, D., Yu, B., Huang, Z., Luo, Y., Zheng, P., Mao, X., Yu, J., Luo, J., Yan, H., & He, J. (2022). Effect of sialyllactose administration on growth performance and intestinal epithelium development in suckling piglets. Journal of Animal Science and Biotechnology, 13, 30. https://doi.org/10.1016/j.anifeedsci.2022.115205

European Medicines Agency. (2024). Annual Report 2023-The European Medicines Agency’s contribution to science, medicines and health in 2023. In AIMS Energy. https://doi.org/10.3934/energy.2024013

Fairbrother, J. M., Nadeau, É., & Gyles, C. L. (2005). Escherichia coli in postweaning diarrhea in pigs: an update on bacterial types, pathogenesis, and prevention strategies . Animal Health Research Reviews, 6(1), 17–39. https://doi.org/10.1079/ahr2005105

Fan, X., Hu, H., Chen, D., Yu, B., He, J., Yu, J., Luo, J., Eckhardt, E., Luo, Y., Wang, J., Yan, H., & Mao, X. (2021). Lentinan administration alleviates diarrhea of rotavirus-infected weaned pigs via regulating intestinal immunity. Journal of Animal Science and Biotechnology, 12, 43. https://doi.org/10.1186/s40104-021-00562-6

Freivogel, C., & Visschers, V. H. M. (2020). Understanding the underlying psychosocial determinants of safe food handling among consumers to mitigate the transmission risk of antimicrobial-resistant bacteria. International Journal of Environmental Research and Public Health, 17, 2546. https://doi.org/10.3390/ijerph17072546

Gibson, G. R., Hutkins, R., Sanders, M. E., Prescott, S. L., Reimer, R. A., Salminen, S. J., Scott, K., Stanton, C., Swanson, K. S., Cani, P. D., Verbeke, K., & Reid, G. (2017). Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nature Reviews Gastroenterology and Hepatology, 14(8), 491–502. https://doi.org/10.1038/nrgastro.2017.75

He, L., Zhao, X., Li, J., & Yang, C. (2022). Post-weaning diarrhea and use of feedstuffs in pigs. Animal Frontiers, 12(6), 41–52. https://doi.org/10.1093/af/vfac079

Heo, J. M., Opapeju, F. O., Pluske, J. R., Kim, J. C., Hampson, D. J., & Nyachoti, C. M. (2012). Gastrointestinal health and function in weaned pigs: A review of feeding strategies to control post-weaning diarrhoea without using in-feed antimicrobial compounds. Journal of Animal Physiology and Animal Nutrition, 97(2), 207–237. https://doi.org/10.1111/j.1439-0396.2012.01284.x

Hernández, N., Roques, B. B., Lacroix, M. Z., & Concordet, D. (2024). Delivery strategies to improve piglets exposure to oral antimicrobials. BMC Veterinary Research, 20, 482. https://doi.org/10.1186/s12917-024-04334-y

Hu, Y., Dun, Y., Li, S., Zhang, D., Peng, N., Zhao, S., & Liang, Y. (2015). Dietary Enterococcus faecalis LAB31 improves growth performance, reduces diarrhea, and increases fecal Lactobacillus number of weaned piglets. PLoS ONE, 10(1), e0116635. https://doi.org/10.1371/journal.pone.0116635

Hu, Y., Dun, Y., Li, S., Zhao, S., Peng, N., & Liang, Y. (2014). Effects of bacillus subtilis kn-42 on growth performance, diarrhea and faecal bacterial flora of weaned piglets. Asian-Australasian Journal of Animal Sciences, 27(8), 1131–1140. https://doi.org/10.5713/ajas.2013.13737

Jia, N., Jin, J., Wei, X., Trabalza-Marinucci, M., Jia, G., Zhou, Q., Zhang, R., Li, H., Wu, F., Zhao, H., Luo, H., Che, L., & Tang, J. (2025). Effects of fermented wheat bran on growth performance, nutrient apparent digestibility, immune function and fecal microbiota of weaned piglets. Frontiers in Veterinary Science, 12, 1561196. https://doi.org/10.3969/j.issn.1006-267x.2022.01.016

Jiang, Z., Yang, M., Su, W., Mei, L., Li, Y., Guo, Y., Li, Y., Liang, W., Yang, B., Huang, Z., & Wang, Y. (2024). Probiotics in piglet: from gut health to pathogen defense mechanisms. Frontiers in Immunology, 15, 1468873. https://doi.org/10.3389/fimmu.2024.1468873

Kiarie, E., Bhandari, S., Scott, M., Krause, D. O., & Nyachoti, C. M. (2011). Growth performance and gastrointestinal microbial ecology responses of piglets receiving Saccharomyces cerevisiae fermentation products after an oral challenge with Escherichia coli (K88). Journal of Animal Science, 89, 1062–1078. https://doi.org/10.2527/jas.2010-3424

Kim, B.-O., Do, S., Jeong, J.-H., Jang, J.-C., & Kim, Y. Y. (2025). Effect of various levels of milk by-products on growth performance, blood profiles, and intestinal morphology of weaned pigs. Journal of Animal Science and Technology, 67(2), 342–351. https://doi.org/10.5187/jast.2024.e32

Li, H., Liu, X., Shang, Z., & Qiao, J. (2021). Clostridium butyricum Helps to Alleviate Inflammation in Weaned Piglets Challenged With Enterotoxigenic Escherichia coli K88. Frontiers in Veterinary Science, 8, 683863. https://doi.org/10.3389/fvets.2021.683863

Li, Y., Hou, S., Chen, J., Peng, W., Wen, W., Chen, F., & Huang, X. (2019). Oral administration of Lactobacillus delbrueckii during the suckling period improves intestinal integrity after weaning in piglets. Journal of Functional Foods, 63, 103591. https://doi.org/10.1016/j.jff.2019.103591

Liao, S. F., & Nyachoti, M. (2017). Using probiotics to improve swine gut health and nutrient utilization. Animal Nutrition, 3(4), 331–343. https://doi.org/10.1016/j.aninu.2017.06.007

Liu, H., Hou, C., Wang, G., Jia, H., Yu, H., Zeng, X., Thacker, P. A., Zhang, G., & Qiao, S. (2017). Lactobacillus reuteri I5007 modulates intestinal host defense peptide expression in the model of IPEC-J2 cells and neonatal piglets. Nutrients, 9, 559. https://doi.org/10.3390/nu9060559

Liu, Y., Song, M., Che, T. M., Almeida, J. A. S., Lee, J. J., Bravo, D., Maddox, C. W., & Pettigrew, J. E. (2013). Dietary plant extracts alleviate diarrhea and alter immune responses of weaned pigs experimentally infected with a pathogenic Escherichia coli. Journal of Animal Science, 91, 5294–5306. https://doi.org/10.2527/jas.2012-6194

Lu, X., Zhang, M., Zhao, L., Ge, K., Wang, Z., Jun, L., & Ren, F. (2018). Growth performance and post-weaning diarrhea in piglets fed a diet supplemented with probiotic complexes. Journal of Microbiology and Biotechnology, 28(11), 1791–1799. https://doi.org/10.4014/jmb.1807.07026

Madesh, M., Yan, J., Jinan, G., Hu, P., Kim, I. H., Liu, H. Y., Ennab, W., Jha, R., & Cai, D. (2025). Phytogenics in swine nutrition and their effects on growth performance, nutrient utilization, gut health, and meat quality: a review. Stress Biology, 5, 11. https://doi.org/10.1007/s44154-024-00209-2

Mao, X., Xiao, X., Chen, D., Yu, B., He, J., Chen, H., Xiao, X., Luo, J., Luo, Y., Tian, G., & Wang, J. (2017). Dietary apple pectic oligosaccharide improves gut barrier function of rotavirus-challenged weaned pigs by increasing antioxidant capacity of enterocytes. Oncotarget, 8(54), 92420–92430. https://doi.org/10.18632/oncotarget.21367

Ortiz Sanjuán, J. M., Manzanilla, E. G., Cabrera-Rubio, R., Crispie, F., Cotter, P. D., Garrido, J. J., Ekhlas, D., O’Neill, L., & Argüello, H. (2024). Fine-tuning of post-weaning pig microbiome structure and functionality by in-feed zinc oxide and antibiotics use. Frontiers in Cellular and Infection Microbiology, 14, 1354449. https://doi.org/10.3389/fcimb.2024.1354449

Partanen, K. H., & Mroz, Z. (1999). Organic acids for performance enhancement in pig diets. Nutrition Research Reviews, 12(1), 117–145. https://doi.org/10.1079/095442299108728884

Pluske, J. R., Turpin, D. L., & Kim, J. C. (2018). Gastrointestinal tract (gut) health in the young pig. Animal Nutrition, 4, 187–196. https://doi.org/10.1016/j.aninu.2017.12.004

Ra, Y. E., & Bang, Y. J. (2024). Balancing act of the intestinal antimicrobial proteins on gut microbiota and health. Journal of Microbiology, 62(3), 167–179. https://doi.org/10.1007/s12275-024-00122-3

Rhouma, M., Fairbrother, J. M., Beaudry, F., & Letellier, A. (2017). Post weaning diarrhea in pigs: Risk factors and non-colistin-based control strategies. Acta Veterinaria Scandinavica, 59, 31. https://doi.org/10.1186/s13028-017-0299-7

Schley, P. D., & Field, C. J. (2002). The immune-enhancing effects of dietary fibres and prebiotics. British Journal of Nutrition, 87(S2), S221–S230. https://doi.org/10.1079/bjn/2002541

Steiner, T., & Syed, B. (2015). Phytogenic feed additives in animal nutrition. In Á. Máthe (Ed.), Medicinal and Aromatic Plants of the World (pp. 403–423). Springer Science+Business Media. https://doi.org/10.1007/978-981-15-3024-1_13

Su, W., Gong, T., Jiang, Z., Lu, Z., & Wang, Y. (2022). The role of probiotics in alleviating postweaning diarrhea in piglets from the perspective of intestinal barriers. Frontiers in Cellular and Infection Microbiology, 12, 1–12. https://doi.org/10.3389/fcimb.2022.883107

Suiryanrayna, M. V. A. N., & Ramana, J. V. (2015). A review of the effects of dietary organic acids fed to swine. Journal of Animal Science and Biotechnology, 6, 45. https://doi.org/10.1186/s40104-015-0042-z

Sun, Y., Duarte, M. E., & Kim, S. W. (2021). Dietary inclusion of multispecies probiotics to reduce the severity of post-weaning diarrhea caused by Escherichia coli F18+ in pigs. Animal Nutrition, 7(2), 326–333. https://doi.org/10.1016/j.aninu.2020.08.012

Sung, J. Y., Deng, Z., & Kim, S. W. (2025). Antibiotics and Opportunities of Their Alternatives in Pig Production: Mechanisms Through Modulating Intestinal Microbiota on Intestinal Health and Growth. Antibiotics, 14, 301. https://doi.org/10.3390/antibiotics14030301

Tang, W., Chen, D., Yu, B., He, J., Huang, Z., Zheng, P., Mao, X., Luo, Y., Luo, J., Wang, Q., Wang, H., & Yu, J. (2020). Capsulized faecal microbiota transplantation ameliorates post-weaning diarrhoea by modulating the gut microbiota in piglets. Veterinary Research, 51(1), 55. https://doi.org/10.1186/s13567-020-00779-9

Tatemoto, P., Vieira, F., & Broom, D. M. (2025). Pig farming practices compromising biosecurity and causing poor welfare of pigs. Frontiers in Veterinary Science, 12, 1558734. https://doi.org/10.3389/fvets.2025.1558734

Tian, Q. Y., & Piao, X. S. (2019). Essential oil blend could decrease diarrhea prevalence by improving antioxidative capability for weaned pigs. Animals, 9, 847. https://doi.org/10.3390/ani9100847

Tiseo, K., Laura, H., Marius, G., P, R. T., & P., V. B. T. (2020). Global trends in antimicrobial use in food animals from 2017 to 2030. Antibiotics, 9, 918. https://doi.org/10.3390/antibiotics9120918

Torres Pitarch, A., Keiner, A., Le Gall, M., Molist, F., Guan, X., Middelkoop, A., Jiménez-Moreno, E., Balfagón, A., Mantovani, G., Nofrarías, M., & Aumiller, T. (2025). Impact of a phytogenic feed additive on diarrhea incidence, intestinal histomorphology and fecal excretion of f4-fimbriated enterotoxigenic Escherichia coli in post-weaning piglets. Stresses, 5, 8. https://doi.org/10.3390/stresses5010008

Trckova, M., Faldyna, M., Alexa, P., Sramkova Zajacova, Z., Gopfert, E., Kumprechtova, D., Auclair, E., & D’Inca, R. (2014). The effects of live yeast Saccharomyces cerevisiae on postweaning diarrhea, immune response, and growth performance in weaned piglets. Journal of Animal Science, 92(2), 767–774. https://doi.org/10.2527/jas.2013-6793

Van Boeckel, T. P., Brower, C., Gilbert, M., Grenfell, B. T., Levin, S. A., Robinson, T. P., Teillant, A., & Laxminarayan, R. (2015). Global trends in antimicrobial use in food animals. Proceedings of the National Academy of Sciences of the United States of America, 112(18), 5649–5654. https://doi.org/10.1073/pnas.1503141112

Wang, X. L., Liu, Z. Y., Li, Y. H., Yang, L. Y., Yin, J., He, J. H., Hou, D. X., Liu, Y. L., & Huang, X. G. (2021). Effects of dietary supplementation of Lactobacillus delbrueckii on gut microbiome and intestinal morphology in weaned piglets. Frontiers in Veterinary Science, 8, 1–12. https://doi.org/10.3389/fvets.2021.692389

Xu, X., Mo, K., Cui, C., Lan, Y., Ling, L., Xu, J., Li, L., & Huang, X. (2024). Microencapsulated essential oils alleviate diarrhea in weaned piglets by modulating the intestinal microbial barrier as well as not inducing antibiotic resistance: a field research. Frontiers in Veterinary Science, 11, 1396051. https://doi.org/10.3389/fvets.2024.1396051

Yang, K. M., Jiang, Z. Y., Zheng, C. T., Wang, L., & Yang, X. F. (2014). Effect of Lactobacillus plantarum on diarrhea and intestinal barrier function of young piglets challenged with enterotoxigenic Escherichia coli K88. Journal of Animal Science, 92, 1496–1503. https://doi.org/10.2527/jas.2013-6619

Yu, W., Xiao, X., Chen, D., Yu, B., He, J., Zheng, P., Yu, J., Luo, J., Luo, Y., Yan, H., Yi, X., Wang, J., Wang, H., Wang, Q., & Mao, X. (2022). Effect of dietary lactose supplementation on growth performance and intestinal epithelium functions in weaned pigs challenged by rotavirus. Animals, 12, 2336. https://doi.org/10.3390/ani12182336

Zeng, Z., Zhang, S., Wang, H., & Piao, X. (2015). Essential oil and aromatic plants as feed additives in non-ruminant nutrition: A review. Journal of Animal Science and Biotechnology, 6, 7. https://doi.org/10.1186/s40104-015-0004-5

Zhang, W., Zhu, Y. H., Zhou, D., Wu, Q., Song, D., Dicksved, J., & Wang, J. F. (2017). Oral Administration of a Select Mixture of Bacillus Probiotics Affects the Gut. Applied and Environmental Microbiology, 83(3), e02747-16. https://doi.org/https://doi.org/ 10.1128/AEM.02747-16

Zhao, B. C., Wang, T. H., Chen, J., Qiu, B. H., Xu, Y. R., & Li, J. L. (2024). Essential oils improve nursery pigs’ performance and appetite via modulation of intestinal health and microbiota. Animal Nutrition, 16, 174–188. https://doi.org/10.1016/j.aninu.2023.10.007

Zhao, W., Yuan, M., Li, P., Yan, H., Zhang, H., & Liu, J. (2019). Short-chain fructo-oligosaccharides enhances intestinal barrier function by attenuating mucosa inflammation and altering colonic microbiota composition of weaning piglets. Italian Journal of Animal Science, 18(1), 976–986. https://doi.org/10.1080/1828051X.2019.1612286

Zheng, L., Duarte, M. E., Sevarolli Loftus, A., & Kim, S. W. (2021). Intestinal health of pigs upon weaning: challenges and nutritional intervention. Frontiers in Veterinary Science, 8, 628258. https://doi.org/10.3389/fvets.2021.628258

Zhu, C., Wang, L., Wei, S. yong, Chen, Z., Ma, X. yong, Zheng, C. tian, & Jiang, Z. yong. (2017). Effect of yeast Saccharomyces cerevisiae supplementation on serum antioxidant capacity, mucosal sIgA secretions and gut microbial populations in weaned piglets. Journal of Integrative Agriculture, 16(9), 2029–2037. https://doi.org/10.1016/S2095-3119(16)61581-2

Zong, X., Fu, J., Xu, B., Wang, Y., & Jin, M. (2020). Interplay between gut microbiota and antimicrobial peptides. Animal Nutrition, 6(4), 389–396. https://doi.org/10.1016/j.aninu.2020.09.002
Publicado
2026-01-11
Cómo citar
Navas, Y., Aragadvay-Yungán, G., & Vásquez, C. (2026). Estrategias alternativas al uso de antibióticos durante la etapa postdestete en cerdos criados en sistemas de producción intensiva. Revista De La Universidad Del Zulia, 17(48), 346-371. https://doi.org/10.5281/zenodo.18210603