Integración del desminado humanitario con la tecnología de control remoto en el proceso educativo

Palabras clave: Detección de minas, zapadores, operadores de UAV, estudiantes de nivel superior, descifradores, remoción de minas, cooperación internacional

Resumen

El objetivo del trabajo es investigar la posibilidad de introducir el sistema de desminado humanitario en el proceso educativo de las instituciones de educación superior (IES) de Ucrania. También se estudió la introducción de equipos modernos contra artefactos explosivos improvisados, por ejemplo los controlados a distancia. Métodos utilizados: análisis de contenido, entrevistas semiestructuradas y autoevaluación de la competencia del zapador. La investigación realizada fue la primera en describir los resultados de la posibilidad de introducir un sistema de desminado humanitario en las IES de Ucrania, donde aún no se ha implementado. Se constató que las instituciones educativas de formación militar en diversos campos cuentan con suficientes recursos materiales y técnicos para la formación profesional del personal de desminado. También se propone renovar el equipo de desminado, así como introducir en el proceso educativo una actividad de proyecto sobre el desarrollo de mecanismos controlados remotamente contra objetos explosivos. Los resultados pueden ser útiles para investigadores y docentes que trabajan en la actualización de los contenidos de la educación de acuerdo con las necesidades de seguridad actuales. Se deben realizar más investigaciones sobre el seguimiento de nuevos equipos de desminado.

Descargas

La descarga de datos todavía no está disponible.

Biografía del autor/a

Petro Dziuba, Bohdan Khmelnytskyi National Academy of the State Border Guard Service of Ukraine, Khmelnytskyi, Ukraine.

Faculty of State Border Security, Bohdan Khmelnytskyi National Academy of the State Border Guard Service of
Ukraine, Khmelnytskyi, Ukraine.

Vadym Neroba, Bohdan Khmelnytskyi National Academy of the State Border Guard Service of Ukraine, Khmelnytskyi, Ukraine.

Faculty of State Border Security, Bohdan Khmelnytskyi National Academy of the State Border Guard Service of
Ukraine, Khmelnytskyi, Ukraine.

Andrii Chukanov, Bohdan Khmelnytskyi National Academy of the State Border Guard Service of Ukraine, Khmelnytskyi, Ukraine.

Faculty of State Border Security, Bohdan Khmelnytskyi National Academy of the State Border Guard Service of Ukraine, Khmelnytskyi, Ukraine.

Volodymyr Shcherbliuk, Bohdan Khmelnytskyi National Academy of the State Border Guard Service of Ukraine, Khmelnytskyi, Ukraine.

Faculty of State Border Security, Bohdan Khmelnytskyi National Academy of the State Border Guard Service
of Ukraine, Khmelnytskyi, Ukraine.

Oleksandr Shkvarskiy, Kamianets-Podilskyi Ivan Ohiienko National University, Kamianets-Podilskyi, Ukraine.

Kamianets-Podilskyi Ivan Ohiienko National University, Kamianets-Podilskyi, Ukraine.

Citas

Al Shukri, H. M., & Dammak, A. (2022). Group Decision making model for Evolution and Benchmarking Explosive Ordnance Risk Education (EORE) messages in Iraq based on distance measurement and spherical fuzzy set. Journal of Mathematics and Statistics Studies, 3(1), 9-34. https://doi.org/10.32996/jmss.2022.3.1.2

Al-Shukri, H. M., & Dammak, A. A (2022). A review of explosive ordnance risk education: IRAQ as a case study. https://www.ijsr.net/archive/v11i8/SR22801211305.pdf

Brancalião, L., Gonçalves, J., Conde, M. Á., & Costa, P. (2022). Systematic mapping literature review of mobile robotics competitions. Sensors, 22(6). https://doi.org/10.3390/s22062160

Colton, A., & Säbom, S. (2022). Virtual reality as an educational tool in the training of explosives for the Swedish armed forces personnel. Digitala Vetenskapliga Arkivet. https://www.diva-portal.org/smash/record.jsf?pid=diva2:1664754

Evans, R., & Perkins, D. (2022) New EOD and IEDD competency standards for mine action: Notes on T&EP 0930, 0931, and IMAS 0930. The Journal of Conventional Weapons Destruction, 25(3), 11. https://commons.lib.jmu.edu/cisr-journal/vol25/iss3/11/

Garbino, H. (2019). Ukraine's newly adopted mine action law: What does this mean for HMA programs?. Journal of Conventional Weapons Destruction, 23(1), 13-16. https://commons.lib.jmu.edu/cisr-journal/vol23/iss1/7/

García Bedoya, O., Prada Jiménez, V. P., & Ramirez, H. F. (2019). Teleoperation in the Hybrid Robot Vali 2.0 for neutralization of explosives. International Journal of Mechanical Engineering and Technology, 10(12). https://ssrn.com/abstract=3527458

Hameed, Q. A., Hussein, H. A., Ahmed, M. A., Salih, M. M., Ismael, R. D., & Omar, M. B. (2022). UXO-AID: A new UXO classification application based on augmented reality to assist deminers. Computers, 11(8), 124. https://doi.org/10.3390/computers11080124

Hegedűs, É. (2022). Geopolitics and geoeconomics in funding humanitarian mine action - the case of Angola. Insights into Regional Development 4(4): 166-183. http://doi.org/10.9770/IRD.2022.4.4(10)

Ibrahim, N., Fahs, S., & AlZoubi, A. (2021). Land cover analysis using satellite imagery for humanitarian mine action and ERW survey. Multimodal Image Exploitation and Learning, 11734: 1173402. https://doi.org/10.1117/12.2589792

Ikpe, E., & Njeri, S. (2022). Landmine clearance and peacebuilding: Evidence from Somaliland. Journal of Peacebuilding & Development, 17(1), 91-107. http://doi.org/10.1177/15423166211068324

Karsch, N., Schulte, H., Musch, T., & Baer, C. (2022). a novel localization system in SAR- Demining Applications using invariant radar channel fingerprints. Sensors, 22(22), 8688. https://doi.org/10.3390/s22228688

Killeen, J., Jaupi, L., & Barrett, B. (2022). Impact assessment of humanitarian demining using object-based peri-urban land cover classification and morphological building detection from VHR Worldview imagery. Remote Sensing Applications: Society and Environment, 27, 100766. https://doi.org/10.1016/j.rsase.2022.100766

Kim, G. (2022). Multi-agent deep reinforcement learning for multi-regional coverage path planning. Ulsan National Institute of Science and Technology. https://scholarworks.unist.ac.kr/handle/201301/57505

Looney, T. C. (2021). Origami Robots for Explosive Ordnance Disposal (Doctoral dissertation). Worcester Polytechnic Institute. https://digital.wpi.edu/downloads/00000332w

Mihr, A., Sorbello, P., & Weiffen, B. (2023). Securitization and Democracy in Eurasia: Transformation and Development in the OSCE Region. https://doi.org/10.1007/978-3-031-16659-4

Njeri, S. (2022). Examining mine action’s ‘peaceability’ potential through everyday narratives and practices in Somaliland. Journal of the British Academy, 10(s1), 109-133. https://doi.org/10.5871/jba/010s1.109

O'Brien, K. (2022). Mine action and the triple Nexus: Examining the empirical links. Digitala Vetenskapliga Arkivet. https://www.diva-portal.org/smash/record.jsf?pid=diva2:1670236

Oladunjoye, O., Maffattone, C., Al-Nawal, J., Fasullo, S., Greenspan, E., Koller, J., ... & Clayton, G. M. (2022). Omnidirectional all-terrain screw-driven robot design, modeling, and application in humanitarian demining. IFAC-PapersOnLine, 55(27), 7-12. https://doi.org/10.1016/j.ifacol.2022.10.480

Otagaki, Y. (2022). Novel Hardware and Machine Learning Methods for NQR Detection of Landmines (Doctoral dissertation) King's College London. https://kclpure.kcl.ac.uk/portal/files/186828043/2022_Otagaki_Yui_1574839_ethesis.pdf

Peleshchak, R., Lytvyn, V., Mediakov, O., Peleshchak, I., Pukach, P., & Šlahor, L. (2023). Small military and industrial under-surface objects detection using data from the UWB GPR, MLP filter, and oscillatory neural network. https://doi.org/10.21203/rs.3.rs-2752593/v1

Petrişor, S. M., & Simion, M. (2022). Contributions on highlighting an energy method used for constructive optimization of the mechanical structure of a mobile robot implemented in humanitarian demining operations. Preprints.org, 2022030023. https://doi.org/10.20944/preprints202203.0023.v1

Pryshchenko, O. A., Plakhtii, V., Dumin, O. M., Pochanin, G. P., Ruban, V. P., Capineri, L., & Crawford, F. (2022). Implementation of an Artificial Intelligence Approach to GPR systems for landmine detection. Remote Sensing, 14(17), 4421. https://doi.org/10.3390/rs14174421

Rodikov, V. (2013). The professional competence of a sapper is the key to the quality performance of a combat mission. Ministry of Defense of Ukraine National University of Defense of Ukraine, 2, 124-130. http://nbuv.gov.ua/UJRN/Vnaou_2013_2_26

Rodikov, V. (2015). Teaching and command stuff methodical recommendations on sappers professional competence development while qualification improvement. Military Education, 1(31), 187-194. http://znp-vo.nuou.org.ua/article/view/198954

Sato, M., Feng, X., Kobayashi, T., Zhou, Z. S., Savelyev, T. G., & Fujiwara, J. (2005, June). Preparation of GPR+ MD sensors evaluation tests in Japan and Afghanistan. In Detection and Remediation Technologies for Mines and Minelike Targets X (pp. 919-928). SPIE. https://doi.org/10.1117/12.603225

Schindler, M. (2023) Mine action and the Triple Nexus. The Journal of Conventional Weapons Destruction, 27(1), 6. https://commons.lib.jmu.edu/cisr-journal/vol27/iss1/6/

Step, W. O. E. (2022). The deadly legacy of explosive ordnance for children in Yemen. Save the Children. https://www.savethechildren.org.nz/assets/Files/Reports/Watching-Our- Every-Step-Final-Report.pdf

Tuohy, M., Greenspan, E., Fasullo, S., Baur, J., Steinberg, G., Zheng, L., ... & de Smet PhD, T. (2023) Inspiring the next generation of humanitarian mine action researchers. The Journal of Conventional Weapons Destruction, 27(1), 7. https://commons.lib.jmu.edu/cisr- journal/vol27/iss1/7/

Wilkinson, M., Schevey, A., & Al Zubaidi, A. (2023). The Bigger Picture: Considerations toward the sustainable localization of mine action. The Journal of Conventional Weapons Destruction, 27(1), 44-50. https://commons.lib.jmu.edu/cgi/viewcontent.cgi?article=3000&context=cisr-journal
Publicado
2023-12-16
Cómo citar
Dziuba, P., Neroba, V., Chukanov, A., Shcherbliuk, V., & Shkvarskiy, O. (2023). Integración del desminado humanitario con la tecnología de control remoto en el proceso educativo. Revista De La Universidad Del Zulia, 15(42), 228-244. https://doi.org/10.46925//rdluz.42.13