Modelación de barreras energéticas para la transición industrial en la Economía Circular

Palabras clave: Transición en la circularidad energética, barreras transitivas energéticas, economía circular industrial, ISM-MICMAC circularidad energética

Resumen

Los sistemas industriales de producción mientras agotan las existencias de materiales, liberan emisiones en formas que la naturaleza no puede asimilar, para solventar esta situación una incipiente alternativa es transitar a un modelo de Economía Circular en el que los procesos industriales optimicen sus flujos energéticos y se sustituya la demanda y participación de energías fósiles por renovables, situación que ha presentado barreras que aún no se entienden del todo y que han obstaculizado su adopción. Es por ello que, el objetivo de esta investigación consistió en modelar las barreras energéticas, a través del Modelado Estructural Interpretativo y la Matriz de Impacto Cruzado-Multiplicación Aplicada a la Clasificación. Se concluye que las barreras y sus interrelaciones prioritarias se orienten a lo político-regulatorio, por lo que se sugiere promover un marco jurídico fundamentado en las mejores prácticas internacionales para fomentar la transición a la circularidad energética.

Descargas

La descarga de datos todavía no está disponible.

Biografía del autor/a

Fernando Lámbarry-Vilchis, Instituto Politécnico Nacional. Ciudad de México, México.

Investigador del Instituto Politécnico Nacional. Escuela Superior de Comercio y Administración ST. Ciudad de México, México. 

Juan Carlos Moreno-Jiménez, Investigador independiente. Ciudad de México, México.

Candidato a Dr. en Ciencias Administrativas. Investigador independiente. Ciudad de México, México.

Citas

Agrawal, N. M. (2019). Modeling Deming’s quality principles to improve performance using interpretive structural modeling and MICMAC analysis. International Journal of Quality and Reliability Management, 36(7), 1159–1180. https://doi.org/10.1108/IJQRM-07-2018-0204

Araujo Galvão, G. D., De Nadae, J., Clemente, D. H., Chinen, G., & De Carvalho, M. M. (2018). Circular Economy: Overview of Barriers. Procedia CIRP, 73, 79–85. https://doi.org/10.1016/j.procir.2018.04.011

Arcade, J., Godet, M., Meunier, F., & Roubelat, F. (2004). Análisis estructural con el método Micmac y estrategia de los actores con el método Mactor. In Futures Research Methodology, Version 1.0.

Asante, D., He, Z., Adjei, N. O., & Asante, B. (2020). Exploring the barriers to renewable energy adoption utilising MULTIMOORA- EDAS method. Energy Policy, 142. https://doi.org/10.1016/j.enpol.2020.111479

Bilal, M., Khan, K. I. A., Thaheem, M. J., & Nasir, A. R. (2020). Current state and barriers to the circular economy in the building sector: Towards a mitigation framework. Journal of Cleaner Production, 276. https://doi.org/10.1016/j.jclepro.2020.123250

Bonilla, C. S., & Cordero, J. M. (2019). La dimensión jurídica de la energía eléctrica y las energías renovables en México. Revista Digital de Derecho Administrativo, 22, 299–333. https://doi.org/10.18601/21452946.n22.12

Boons, F., Chertow, M., Park, J., Spekkink, W., & Shi, H. (2017). Industrial Symbiosis Dynamics and the Problem of Equivalence: Proposal for a Comparative Framework. Journal of Industrial Ecology, 21(4), 938–952. https://doi.org/10.1111/jiec.12468

CEPAL. Comisión Económica para América Latina y el Caribe. (2018). Seguridad energética: análisis y evaluación del caso de México. Serie Estudios y Perspectivas, N° 179.

Chander, M., Jain, S. K., & Shankar, R. (2013). Modeling of information security management parameters in Indian organizations using ISM and MICMAC approach. Journal of Modelling in Management, 8(2), 171–189. https://doi.org/10.1108/JM2-10-2011-0054

Corona, B., Shen, L., Reike, D., Rosales Carreón, J., & Worrell, E. (2019). Towards sustainable development through the circular economy—A review and critical assessment on current circularity metrics. Resources, Conservation and Recycling, 151(September 2019), 104498. https://doi.org/10.1016/j.resconrec.2019.104498

de Wit, M., Hoogzaad, J., & von Daniels, C. (2020). The Circularity Gap Report 2020.

del Pilar, E. C., Alegado, I., & Bongo, M. F. (2019). Structural relationships among critical failure factors of microbusinesses. Journal of Small Business and Enterprise Development, 27(1), 148–174. https://doi.org/10.1108/JSBED-01-2019-0001

Diezmartínez, C. V. (2021). Clean energy transition in Mexico: Policy recommendations for the deployment of energy storage technologies. Renewable and Sustainable Energy Reviews, 135(June 2020), 110407. https://doi.org/10.1016/j.rser.2020.110407

Dube, A. S., & Gawande, R. S. (2016). Analysis of green supply chain barriers using integrated ISM-fuzzy MICMAC approach. Benchmarking, 23(6), 1558–1578. https://doi.org/10.1108/BIJ-06- 2015-0057

Elia, V., Gnoni, M. G., & Tornese, F. (2017). Measuring circular economy strategies through index methods: A critical analysis. Journal of Cleaner Production, 142, 2741–2751. https://doi.org/10.1016/j.jclepro.2016.10.196

Elia, V., Gnoni, M. G., & Tornese, F. (2020). Evaluating the adoption of circular economy practices in industrial supply chains: An empirical analysis. Journal of Cleaner Production, 273, 122966. https://doi.org/10.1016/j.jclepro.2020.122966

Ellen MacArthur Foundation. (2014). Towards the Circular Economy vol.3: accelerating the scale-up across global supply chains. In Ellen MacArthur Foundation (EMF).

Ellen MacArthur Foundation. (2015a). Circular Indicators: an approach to measuring circularity. Methodology.

Ellen MacArthur Foundation. (2015b). Growth within: a circular economy vision for a competitive europe. Ellen MacArthur Foundation, 100.

Ellen MacArthur Foundation. (2015c). Towards a Circular Economy: Business Rationale for an Accelerated Transition. Ellen MacArthur Foundation (EMF), 20.

Ellen MacArthur Foundation. (2020). Financing the circular economy: Capturing the opportunity.

Ellen MacarthurFoundation. (2019). How The Circular Economy Tackles Climate Change. Ellen MacArthur Foundation, September, 1–62.

European Environment Agency Report. (2016). Circular economy in Europe - developing the knowledge base (European Environment Agency Report No 2/2016). In Publication Office of the Euopean Union (Issue 2). https://doi.org/10.2800/51444

Gan, X., Chang, R., Zuo, J., Wen, T., & Zillante, G. (2018). Barriers to the transition towards off- site construction in China: An Interpretive structural modeling approach. Journal of Cleaner Production, 197, 8–18. https://doi.org/10.1016/j.jclepro.2018.06.184

Geng, Y., Fu, J., Sarkis, J., & Xue, B. (2012). Towards a national circular economy indicator system in China: An evaluation and critical analysis. Journal of Cleaner Production, 23(1), 216–224. https://doi.org/10.1016/j.jclepro.2011.07.005

Ghimire, L. P., & Kim, Y. (2018). An analysis on barriers to renewable energy development in the context of Nepal using AHP. Renewable Energy, 129, 446–456. https://doi.org/10.1016/j.renene.2018.06.011

Gobierno de México. (2019). Plan Nacional de Desarrollo 2019-2024. Diario Oficial de La Federación, 1–75.

Godet, M., Durance, P., & Gerber, A. (2013). Strategic Foresight La Prospective Use and Misuse of Scenario Building. The Circle of Future Entrepreneurs, 65(1), 421.https://doi.org/10.1057/9781137293503

González-López, R., & Giampietro, M. (2018). Relational analysis of the oil and gas sector of Mexico: Implications for Mexico’s energy reform. Energy, 154, 403–414. https://doi.org/10.1016/j.energy.2018.04.134

Govindan, K., & Hasanagic, M. (2018). A systematic review on drivers, barriers, and practices towards circular economy: a supply chain perspective. International Journal of Production Research, 56(1–2), 278–311. https://doi.org/10.1080/00207543.2017.1402141

IEA, IRENA, UNSD, World Bank, & WHO. (2020). Tracking SDG 7: The Energy Progress Report. World Bank, 176. https://trackingsdg7.esmap.org/

IPCC. (2018). Proposed outline of the special report in 2018 on the impacts of global warming of 1 . 5 ° C above pre-industrial levels and related global greenhouse gas emission pathways , in the context of strengthening the global response to the threat of climate cha. Ipcc - Sr15, 2(October), 17–20.

IRENA (2020a). Global Renewables Outlook: Energy transformation 2050. In International Renewable Energy Agency.

IRENA. (2020b). Reaching zero with renewables: Eliminating CO2 emissions from industry and transport in line with the 1.50C climate goal. 216.

Kalchenko, O., Evseeva, S., Evseeva, O., & Plis, K. (2019). Circular economy for the energy transition in Saint Petersburg, Russia. E3S Web of Conferences, 110. https://doi.org/10.1051/e3sconf/201911002030

Khan, I., Hou, F., & Le, H. P. (2021). The impact of natural resources, energy consumption, and population growth on environmental quality: Fresh evidence from the United States of America. Science of the Total Environment, 754, 142222. https://doi.org/10.1016/j.scitotenv.2020.142222

Korhonen, J., Honkasalo, A., & Seppälä, J. (2018a). Circular Economy: The Concept and its Limitations. Ecological Economics, 143, 37–46. https://doi.org/10.1016/j.ecolecon.2017.06.041

Korhonen, J., Honkasalo, A., & Seppälä, J. (2018b). Circular Economy: The Concept and its Limitations. Ecological Economics, 143, 37–46. https://doi.org/10.1016/j.ecolecon.2017.06.041

Luthra, S., Kumar, S., Garg, D., & Haleem, A. (2015). Barriers to renewable/sustainable energy technologies adoption: Indian perspective. Renewable and Sustainable Energy Reviews, 41, 762–776. https://doi.org/10.1016/j.rser.2014.08.077

Luthra, S., Kumar, S., Kharb, R., Ansari, M. F., & Shimmi, S. L. (2014). Adoption of smart grid technologies: An analysis of interactions among barriers. Renewable and Sustainable Energy Reviews, 33, 554–565. https://doi.org/10.1016/j.rser.2014.02.030

Martinez, N. (2020). Resisting renewables: The energy epistemics of social opposition in Mexico. Energy Research and Social Science, 70(May), 101632. https://doi.org/10.1016/j.erss.2020.101632

Mirza, U. K., Ahmad, N., Harijan, K., & Majeed, T. (2009). Identifying and addressing barriers to renewable energy development in Pakistan. Renewable and Sustainable Energy Reviews, 13(4), 927– 931. https://doi.org/10.1016/j.rser.2007.11.006

Moshiri, S., & Martinez Santillan, M. A. (2018). The welfare effects of energy price changes due to energy market reform in Mexico. Energy Policy, 113(September 2017), 663–672. https://doi.org/10.1016/j.enpol.2017.11.035

Navarro Chávez, J. C. L. (2019). La Eficiencia del Sector Eléctrico en México 2008-2015. Análisis Económico, 34(85), 71–94. https://doi.org/10.24275/uam/azc/dcsh/ae/2019v34n85/navarro

Nuñez-Cacho, P., Górecki, J., Molina-Moreno, V., & Corpas-Iglesias, F. A. (2018). What gets measured, gets done: Development of a Circular Economy measurement scale for building industry. Sustainability (Switzerland), 10(7). https://doi.org/10.3390/su10072340

OECD. (2017). Driving Performance at Mexico’s Energy Regulatory Commission. Ramesh, A., Banwet, D. K., & Shankar, R. (2010). Modeling the barriers of supply chain collaboration. Journal of Modelling in Management, 5(2), 176–193. https://doi.org/10.1108/17465661011061014

Ramos Gutierrez, L. de J., & Montenegro Fragoso, M. (2019). A New Way to Reduce Electrical Intermittency in a Sustainable Way, Case Study: A Pumped Storage Reservoir-Solar Hybrid System in Mexico. Ingenieria, 24(3), 209–223.

Sagheer, S., Yadav, S. S., & Deshmukh, S. G. (2009). An application of interpretative structural modeling of the compliance to food standards. International Journal of Productivity and Performance Management, 58(2), 136–159. https://doi.org/10.1108/17410400910928734

Seetharaman, Moorthy, K., Patwa, N., Saravanan, & Gupta, Y. (2019). Breaking barriers in deployment of renewable energy. Heliyon, 5(1), e01166. https://doi.org/10.1016/j.heliyon.2019.e01166

Shah, S. A. A., Solangi, Y. A., & Ikram, M. (2019). Analysis of barriers to the adoption of cleaner energy technologies in Pakistan using Modified Delphi and Fuzzy Analytical Hierarchy Process. Journal of Cleaner Production, 235, 1037–1050. https://doi.org/10.1016/j.jclepro.2019.07.020

Shen, L., Song, X., Wu, Y., Liao, S., & Zhang, X. (2016). Interpretive Structural Modeling based factor analysis on the implementation of Emission Trading System in the Chinese building sector. Journal of Cleaner Production, 127, 214–227. https://doi.org/10.1016/j.jclepro.2016.03.151

Suárez-Eiroa, B., Fernández, E., Méndez-Martínez, G., & Soto-Oñate, D. (2019). Operational principles of circular economy for sustainable development: Linking theory and practice. In Journal of Cleaner Production (Vol. 214, pp. 952–961). Elsevier Ltd. https://doi.org/10.1016/j.jclepro.2018.12.271

Tura, N., Hanski, J., Ahola, T., Ståhle, M., Piiparinen, S., & Valkokari, P. (2019). Unlocking circular business: A framework of barriers and drivers. Journal of Cleaner Production, 212, 90–98. https://doi.org/10.1016/j.jclepro.2018.11.202

U.S. Energy Information Administration. (2019). International Energy Outlook 2019 with projections to 2050. Choice Reviews Online, 85. https://doi.org/10.5860/CHOICE.44-3624

Unfccc. (2015). Paris Agreement Spanish.

Velasco-Herrejon, P., & Bauwens, T. (2020). Energy justice from the bottom up: A capability approach to community acceptance of wind energy in Mexico. Energy Research and Social Science, 70(July), 101711. https://doi.org/10.1016/j.erss.2020.101711

Wang, G. H., Wang, Y. X., & Zhao, T. (2008). Analysis of interactions among the barriers to energy saving in China. Energy Policy, 36(6), 1879–1889. https://doi.org/10.1016/j.enpol.2008.02.006

World Business Council For Sustainable Development. (2019). Circular Transition Indicators. July, 40.

Xu, X., & Zou, P. X. W. (2020). Analysis of factors and their hierarchical relationships influencing building energy performance using interpretive structural modelling (ISM) approach. Journal of Cleaner Production, 272, 122650. https://doi.org/10.1016/j.jclepro.2020.122650

Publicado
2023-05-02
Cómo citar
Lámbarry-Vilchis, F., & Moreno-Jiménez, J. C. (2023). Modelación de barreras energéticas para la transición industrial en la Economía Circular. Revista De La Universidad Del Zulia, 14(40), 161-184. https://doi.org/10.46925//rdluz.40.09