Impacto del turismo en la calidad del agua de una laguna del Valle del Mantaro
Resumen
Se evaluaron las características fisicoquímicas (TDS, EC, salinidad y temperatura) de la Laguna de Ñahuimpuquio del Departamento de Junín en Perú. Se realizó el monitoreo en el segundo semestre del 2021: 2 meses del período seco (agosto y septiembre) y 2 meses del período lluvioso (octubre y noviembre), en 5 puntos claves dentro de la laguna; punto 1: Zona de embarcadero; punto 2: Manantial natural “Puquio” que alimenta a la laguna; punto 3: zona de recreos turísticos y venta de alimentos; punto 4: zona de desembocadura de la laguna; y el punto 5: centro de la laguna de Ñahuimpuquio. Los resultados muestran que el total de sólidos disueltos según la norma NPDWR de USA, ubica el agua de la Laguna de Ñahuimpuquio en un nivel de calidad aceptable para suministro de red, y calidad aceptable para agua purificada de garrafón y/o agua embotellada. La salinidad en la laguna oscila entre 297,2 – 312,2 μS/cm; se considera dentro de los parámetros de Digesa (700 – 1200 μS/cm), lo que indica que la laguna tiene baja toxicidad de iones. La conductividad eléctrica del agua de la laguna muestra valores entre (282 – 303,6 de CE), clasificándose como “Buena”. En cuanto a la temperatura, los resultados muestran unos valores desde (18,52 °C – 24.66 °C). Finalmente se demostró que existen correlaciones significativas entre el turismo de la laguna y el incremento de la temperatura, coductividad eléctrica y el total de sólidos disueltos; mas no existe relación con la salinidad en la laguna de Ñahuimpuquio - Ahuac.
Descargas
Citas
Ahmed, U., Mumtaz, R., Anwar, H., Shah, A. A., Irfan, R., & García-Nieto, J. (2019). Efficient Water Quality Prediction Using Supervised Machine Learning. Water 2019, Vol. 11, Page 2210, 11(11), 2210. https://doi.org/10.3390/W11112210
Alcamo, J. (2019). Water quality and its interlinkages with the Sustainable Development Goals. Current Opinion in Environmental Sustainability, 36, 126–140. https://doi.org/10.1016/J.COSUST.2018.11.005
Amanullah, Khalid, S., Imran, Khan, H. A., Arif, M., Altawaha, A. R., Adnan, M., Fahad, S., Shah, A., & Parmar, B. (2020). Effects of Climate Change on Irrigation Water Quality. Environment, Climate, Plant and Vegetation Growth, 123–132. https://doi.org/10.1007/978-3-030- 49732-3_6
ANA (2018). Metodología para la determinación del índice de calidad de agua Ica-PE, aplicado a los cuerpos de agua continentales superficiales. http://repositorio.ana.gob.pe/handle/20.500.12543/2440
Bain, R., Johnston, R., & Slaymaker, T. (2020). Drinking water quality and the SDGs. Npj Clean Water 2020 3:1, 3(1), 1–3. https://doi.org/10.1038/s41545-020-00085-z
Barrón Pérez, E., Elizabeth, L., & Castro, R. (2017). Panorama del emprendimiento social: Factores institucionales y culturales. XXII Congreso Internacional de Contaduría, Administración e Informática.
Bełdowska, M., Jędruch, A., Sieńska, D., Chwiałkowski, W., Magnuszewski, A., & Kornijów, R. (2021). The impact of sediment, fresh and marine water on the concentration of chemical elements in water of the ice-covered lagoon. Environmental Science and Pollution Research, 28(43), 61189–61200. https://doi.org/10.1007/S11356-021-14936-W/FIGURES/6
Boadi, K. O., & Kuitunen, M. (2002). Urban Waste Pollution in the Korle Lagoon, Accra, Ghana. Environmentalist 2002 22:4, 22(4), 301–309. https://doi.org/10.1023/A:1020706728569
Bui, D. T., Khosravi, K., Tiefenbacher, J., Nguyen, H., & Kazakis, N. (2020). Improving prediction of water quality indices using novel hybrid machine-learning algorithms. Science of The Total Environment, 721, 137612. https://doi.org/10.1016/J.SCITOTENV.2020.137612
Cecchi, T. (2021). Analysis of volatiles organic compounds in Venice lagoon water reveals COVID 19 lockdown impact on microplastics and mass tourism related pollutants. Science of The Total Environment, 783, 146951. https://doi.org/10.1016/J.SCITOTENV.2021.146951
Chen, Y., & Han, D. (2018). Water quality monitoring in smart city: A pilot project. Automation in Construction, 89, 307–316. https://doi.org/10.1016/J.AUTCON.2018.02.008
Chen, Y., Song, L., Liu, Y., Yang, L., & Li, D. (2020). A Review of the Artificial Neural Network Models for Water Quality Prediction. Applied Sciences 2020, Vol. 10, Page 5776, 10(17), 5776. https://doi.org/10.3390/APP10175776
Concha Flores, A. (2020, December 3). Calidad del agua potable para consumo humano de la zona urbana de la provincia de Huancayo. https://issuu.com/thegusstock/docs/calidad_del_agua_potable_para_consumo_humano_de_l a
Dias de Carvalho, A. (2021). Tourism Marketing In Coastal and Maritime Destinations: An Anthropological Approach to the Case of Ria Formosa Lagoon. http://jthmnet.com/journals/jthm/Vol_9_No_1_June_2021/4.pdf
Díaz Edquén, W. E. (2019). Calidad de agua de uso poblacional de la ciudad Chota – Cajamarca 2014. Universidad Nacional Pedro Ruiz Gallo. http://renati.sunedu.gob.pe/handle/sunedu/1188410
Espinoza Tacuri, M. A. (2018). Caracterización del agua del río Alameda y tipificación según Índice de Calidad del Agua, Ayacucho 2014. Universidad Nacional de San Cristóbal de Huamanga. http://renati.sunedu.gob.pe/handle/sunedu/1444594
Ewaid, S. H., Abed, S. A., Al-Ansari, N., & Salih, R. M. (2020). Development and Evaluation of a Water Quality Index for the Iraqi Rivers. Hydrology 2020, Vol. 7, Page 67, 7(3), 67. https://doi.org/10.3390/HYDROLOGY7030067
Fang, X., Li, X., Xiang, Y., Hao, C., Zhao, Y., & Zhang, Y. (2020). Cumulative impact of anthropogenic nutrient inputs on lagoon ecosystems — A case study of Xincun Lagoon, Hainan, China. Regional Studies in Marine Science, 35, 101213. https://doi.org/10.1016/J.RSMA.2020.101213
Flores Paucar, L. A. (2017). Evaluación de la calidad fisicoquímica y micribiológica del agua potable para consumo humano en los distritos de el tambo, huancayo y chilca en el año 2014. Universidad Nacional del Centro del Perú. Huancayo- Perú
Gamboa Ruiz, R. A. (2019). “Calidad microbiana de las fuentes de agua de mayor consumo humano de la población del Cercado de Lima -Perú.” Repositorio Institucional – UNAC. http://renati.sunedu.gob.pe/handle/sunedu/1554032
Gao, Y., Qian, H., Ren, W., Wang, H., Liu, F., & Yang, F. (2020). Hydrogeochemical characterization and quality assessment of groundwater based on integrated-weight water quality index in a concentrated urban area. Journal of Cleaner Production, 260, 121006. https://doi.org/10.1016/J.JCLEPRO.2020.121006
Giri, S. (2021). Water quality prospective in Twenty First Century: Status of water quality in major river basins, contemporary strategies and impediments: A review. Environmental Pollution, 271, 116332. https://doi.org/10.1016/J.ENVPOL.2020.116332
Ha, N. T., Pham, T. D., & Tran, T. T. H. (2021). Zoning Seagrass Protection in Lap An Lagoon, Vietnam Using a Novel Integrated Framework for Sustainable Coastal Management. Wetlands 2021 41:8, 41(8), 1–15. https://doi.org/10.1007/S13157-021-01504-8
Hamid, A., Sami, •, Bhat, U., & Jehangir, A. (2019). Local determinants influencing stream water quality. Applied Water Science 2019 10:1, 10(1), 1–16. https://doi.org/10.1007/S13201-019-
1043-4
Hsu, P. hsiang. (2019). Economic impact of wetland ecotourism: An empirical study of Taiwan’s Cigu Lagoon area. Tourism Management Perspectives, 29, 31–40. https://doi.org/10.1016/J.TMP.2018.10.003
Ibrahim, M. N. (2019). Assessing Groundwater Quality for Drinking Purpose in Jordan: Application of Water Quality Index. Journal of Ecological Engineering, Vol. 20(nr 3), 101–111. https://doi.org/10.12911/22998993/99740
Ighalo, J. O., & Adeniyi, A. G. (2020). A comprehensive review of water quality monitoring and assessment in Nigeria. Chemosphere, 260, 127569. https://doi.org/10.1016/J.CHEMOSPHERE.2020.127569
INEI. (2018). Resultados Definitivos. https://www.inei.gob.pe/media/MenuRecursivo/publicaciones_digitales/Est/Lib1576/12TO MO_01.pdf
Jha, M. K., Shekhar, A., & Jenifer, M. A. (2020). Assessing groundwater quality for drinking water supply using hybrid fuzzy-GIS-based water quality index. Water Research, 179, 115867. https://doi.org/10.1016/J.WATRES.2020.115867
Kawo, N. S., & Karuppannan, S. (2018). Groundwater quality assessment using water quality index and GIS technique in Modjo River Basin, central Ethiopia. Journal of African Earth Sciences, 147, 300–311. https://doi.org/10.1016/J.JAFREARSCI.2018.06.034
Kükrer, S., & Mutlu, E. (2019). Assessment of surface water quality using water quality index and multivariate statistical analyses in Saraydüzü Dam Lake, Turkey. Environmental Monitoring and Assessment 2019 191:2, 191(2), 1–16. https://doi.org/10.1007/S10661-019-7197-6
Lkr, A., Singh, M. R., & Puro, N. (2020). Assessment of water quality status of Doyang River, Nagaland, India, using Water Quality Index. Applied Water Science 2020 10:1, 10(1), 1–13. https://doi.org/10.1007/S13201-019-1133-3
Luo, P., Kang, S., Apip, Zhou, M., Lyu, J., Aisyah, S., Binaya, M., Regmi, R. K., & Nover, D. (2019). Water quality trend assessment in Jakarta: A rapidly growing Asian megacity. PLOS ONE, 14(7), e0219009. https://doi.org/10.1371/JOURNAL.PONE.0219009
MacNeil, M. A., Mellin, C., Matthews, S., Wolff, N. H., McClanahan, T. R., Devlin, M., Drovandi, C., Mengersen, K., & Graham, N. A. J. (2019). Water quality mediates resilience on the Great Barrier Reef. Nature Ecology & Evolution 2019 3:4, 3(4), 620–627. https://doi.org/10.1038/s41559-019-0832-3
Mello, K. de, Taniwaki, R. H., Paula, F. R. de, Valente, R. A., Randhir, T. O., Macedo, D. R., Leal, C. G., Rodrigues, C. B., & Hughes, R. M. (2020). Multiscale land use impacts on water quality: Assessment, planning, and future perspectives in Brazil. Journal of Environmental Management, 270, 110879. https://doi.org/10.1016/J.JENVMAN.2020.110879
Meza Veliz, V. M. (2016). Calidad del recurso hidrico de la subcuenca del Río Lampa-Huancayo. http://repositorio.uncp.edu.pe/bitstream/handle/UNCP/3472/MezaVeliz.pdf?sequence=1
Mukate, S., Wagh, V., Panaskar, D., Jacobs, J. A., & Sawant, A. (2019). Development of new integrated water quality index (IWQI) model to evaluate the drinking suitability of water. Ecological Indicators, 101, 348–354. https://doi.org/10.1016/J.ECOLIND.2019.01.034
Nong, X., Shao, D., Zhong, H., & Liang, J. (2020). Evaluation of water quality in the South-to-North Water Diversion Project of China using the water quality index (WQI) method. Water Research, 178, 115781. https://doi.org/10.1016/J.WATRES.2020.11 5781
Oré, J. (2016). Evaluación de la contaminación del agua ocasionada por actividades piscícolas del río Chía en el distrito de Ingenio – Huancayo [UNCP]. http://repositorio.uncp.edu.pe/handle/UNCP/4578
Peña, A. (2016). Uso de redes neuronales artificiales para optimizar la dosificación de coagulantes en la planta de tratamiento de agua potable, Huancayo | Repositorio CONCYTEC. http://repositorio.concytec.gob.pe/handle/20.500.12390/357
Peña, E. (2020). El uso convencional no sostenible del agua en los hogares de la ciudad de Huancayo. https://repositorio.continental.edu.pe/bitstream/20.500.12394/7498/1/DO_UC_CE_INF_201 9.pdf
Richard Baldeón Beltran, J. (2013). Calidad bacteriológica del agua de cultivo de oncorhynchus mykiss del centro piscícola “El Ingenio”, Huancayo - Junín. http://repositorio.uncp.edu.pe/bitstream/handle/UNCP/1237/Baldeóntesis 2013.pdf?sequence=1
Tavakoly Sany, S. B., Monazami, G., Rezayi, M., Tajfard, M., & Borgheipour, H. (2018). Application of water quality indices for evaluating water quality and anthropogenic impact assessment. International Journal of Environmental Science and Technology 2018 16:7, 16(7), 3001–3012. https://doi.org/10.1007/S13762-018-1894-5
Tian, Y., Jiang, Y., Liu, Q., Dong, M., Xu, D., Liu, Y., & Xu, X. (2019). Using a water quality index to assess the water quality of the upper and middle streams of the Luanhe River, northern China. Science of The Total Environment, 667, 142–151. https://doi.org/10.1016/J.SCITOTENV.2019.02.356
Torre, C. M. de la, & Cristóbal, V. R. (2020). Emprendimiento colectivo juvenil en clave de Economía Social como una herramienta para la prevención de la violencia. DIXI, 22(1), 1–47. https://doi.org/10.16925/2357-5891.2020.01.03
Uddin, M. G., Nash, S., & Olbert, A. I. (2021). A review of water quality index models and their use for assessing surface water quality. Ecological Indicators, 122, 107218. https://doi.org/10.1016/J.ECOLIND.2020.107218
Van Vliet, M. T. H., Jones, E. R., Flörke, M., Franssen, W. H. P., Hanasaki, N., Wada, Y., & Yearsley, J. R. (2021). Global water scarcity including surface water quality and expansions of clean water technologies. Environmental Research Letters, 16(2), 024020. https://doi.org/10.1088/1748-9326/ABBFC3
Varol, M. (2020). Use of water quality index and multivariate statistical methods for the evaluation of water quality of a stream affected by multiple stressors: A case study. Environmental Pollution, 266, 115417. https://doi.org/10.1016/J.ENVPOL.2020.115417
Wang, P., Yao, J., Wang, G., Hao, F., Shrestha, S., Xue, B., Xie, G., & Peng, Y. (2019). Exploring the application of artificial intelligence technology for identification of water pollution characteristics and tracing the source of water quality pollutants. Science of The Total Environment, 693, 133440. https://doi.org/10.1016/J.SCITOTENV.2019.07.246
WHO. (2021). Silver in drinking-water Background document for development of. http://apps.who.int/bookorders.
Xiao, J., Wang, L., Deng, L., & Jin, Z. (2019). Characteristics, sources, water quality and health risk assessment of trace elements in river water and well water in the Chinese Loess Plateau. Science of The Total Environment, 650, 2004–2012. https://doi.org/10.1016/J.SCITOTENV.2018.09.322
Xu, Z., Shen, J., Qu, Y., Chen, H., Zhou, X., Hong, H., Sun, H., Lin, H., Deng, W., & Wu, F. (2022). Using simple and easy water quality parameters to predict trihalomethane occurrence in tap water. Chemosphere, 286, 131586. https://doi.org/10.1016/J.CHEMOSPHERE.2021.131586
Yu, C. Q., Huang, X., Chen, H., Godfray, H. C. J., Wright, J. S., Hall, J. W., Gong, P., Ni, S. Q., Qiao, S. C., Huang, G. R., Xiao, Y. C., Zhang, J., Feng, Z., Ju, X. T., Ciais, P., Stenseth, N. C., Hessen, D. O., Sun, Z. L., Yu, L., … Taylor, J. (2019). Managing nitrogen to restore water quality in China. Nature 2019 567:7749, 567(7749), 516–520. https://doi.org/10.1038/s41586 -019-1001-1
Yunus, A. P., Masago, Y., & Hijioka, Y. (2020). COVID-19 and surface water quality: Improved lake water quality during the lockdown. Science of The Total Environment, 731, 139012. https://doi.org/10.1016/J.SCITOTENV.2020.139012
Zaman, M., Shahid, S. A., & Heng, L. (2018). Irrigation Water Quality. Guideline for Salinity Assessment, Mitigation and Adaptation Using Nuclear and Related Techniques, 113–131. https://doi.org/10.1007/978-3-319-96190-3_5
Zhang, L. (2019). Big Data, Knowledge Mapping for Sustainable Development: A Water Quality Index Case Study. Emerging Science Journal, 3(4), 249–254. https://doi.org/10.28991/ESJ-2019-01187
Copyright
La Revista de la Universidad del Zulia declara que reconoce los derechos de los autores de los trabajos originales que en ella se publican; dichos trabajos son propiedad intelectual de sus autores. Los autores preservan sus derechos de autoría y comparten sin propósitos comerciales, según la licencia adoptada por la revista..
Esta obra está bajo la licencia:
Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)