Características de los cambios en el equilibrio prooxidante- antioxidante de los tejidos durante la activación de la germinación de semillas

Palabras clave: antioxidantes, germinación, glutatión, ácido ascórbico, catalasa, radical anión superóxido, superóxido dismutasa, citocromo oxidasa

Resumen

Objetivo de la investigación: identificar cambios en el valor de indicadores del estado del sistema prooxidante-antioxidante (SPA) en tejidos de semillas en reposo y el inicio de sus procesos de germinación. El tema de la investigación es el papel de los componentes individuales del SPA para garantizar la activación de las semillas antes de la germinación. Metodología. La determinación cuantitativa de indicadores del estado de SPA se realizó en muestras de tejido de semillas de las siguientes plantas: Glycine  max L., Helianthus annuus L., Fagopyrum esculentum L., Linum usitatissimum L., Sinapis alba L., Chenopodium quinoa L. , Panicum miliaceum L., Oryza sativa L., Avena sativa L., Zea mays L., Hordeum vulgare L., Triticum durum Desf. Se determinó la concentración de radical anión superóxido (•O2-), productos activos de TBA, actividad de citocromo oxidasa, actividad de superóxido dismutasa, catalasa,  concentración de ácido ascórbico, glutatión. Los resultados de la investigación  muestran que para los tejidos de semillas de plantas experimentales de Magnoliopsida en reposo, ambos enlaces de SPA son más potentes que en Liliopsida, el nivel de peroxidación de radicales libres (PRL) es menor, lo que se logra tanto por enzimática como por bajo antioxidantes de peso molecular (AO). La activación de la germinación potencia ambos enlaces de SPA en todos los grupos experimentales de plantas. Sin embargo, en Magnoliopsida observamos la mayor generación de •O2-, y el predominio de la protección por AO enzimático, y en Liliopsida -de bajo peso molecular.

Descargas

La descarga de datos todavía no está disponible.

Biografía del autor/a

Mariia Bobrova, Volodymyr Vynnychenko Central Ukrainian State Pedagogical University. Kropyvnytskyi, Ukraine.

Ph.D in Biology, Associate Professor of the Department of Physics, Biology and Methods of Teaching of the Volodymyr Vynnychenko Central Ukrainian State Pedagogical University. Kropyvnytskyi, Ukraine.

Olena Holodaieva, Kyiv International University. Kyiv, Ukraine.

PhD in Chemistry, Associate Professor, Head of the Department of Chemistry and Pharmacognosy of Kyiv
International University. Kyiv, Ukraine.

Svitlana Koval, International European University. Kyiv, Ukraine.

Senior Lecturer of the Department of the Fundamental Disciplines of the International European University.
Kyiv, Ukraine.

Olha Tsviakh, V.O. Sukhomlynskyi Mykolaiv National University. Mykolaiv, Ukraine.

PhD in Biology, Senior Lecturer of the Department of Chemistry of the V.O. Sukhomlynskyi Mykolaiv
National University. Mykolaiv, Ukraine.

Olena Kucher, V.O. Sukhomlynskyi Mykolaiv National University. Mykolaiv, Ukraine.

PhD in Agricultural science, Senior Lecturer of the Department of Chemistry of the V.O. Sukhomlynskyi
Mykolaiv National University. Mykolaiv, Ukraine.

Citas

Apel K., Hirt Н. (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Рlant Biol. Vol. 55. P. 373 – 399. https://doi.org/10.1146/annurev.arplant.55.031903.141701

Baiano A., del Nobile M.A. (2015) Antioxidant compounds from vegetable matrices: Biosynthesis, occurrence, and extraction systems. Crit. Rev. Food Sci. Nutr.;56:2053–2068. doi: 10.1080/10408398.2013.812059

Bartoli C. G., Casalongueb C. A., Simontacchia M., Marquez-Garciac B., Foyer C. H. (2013). Interactions between a hormone and redox signaling pathways in the control of growth and cross-tolerance to stress // Environ. Exp. Bot. – 2013. – 94. – P. 73–88. http://dx.doi.org/10.1016/j.envexpbot.2012.05.003

Bobrova, M., Holodaieva O., Koval S., Kucher O., Tsviakh O. (2021). The effect of hypothermia on the state of the prooxidant-antioxidant system of plants. Revista de la Universidad del Zulia. 33. 2021. P. 82-101. DOI: https://doi.org/10.46925//rdluz.33.07

Bobrova, M., Holodaieva, O., Arkushyna, H., Larycheva, O. y Tsviakh, O. (2020). The value of the prooxidant-antioxidant system in ensuring the immunity of plants. Revista de la Universidad del Zulia. 11, 30 (jul. 2020), 237-266. DOI: https://doi.org/10.46925//rdluz.30.17

Cvetkovska M., Vanlerberghe G. C. (2013). Alternative oxidase impacts the plant response to biotic stress by influencing the mitochondrial generation of reactive oxygen species // Plant Cell Environ. – 2013. – 36. – P. 721–732. https://doi.org/10.1111/pce.12009

Dat J.F., Vandenabeele S., Vranova E. et al. (2000) Dual action of the active oxygen species during plant stress responses // Cell. Mol. Life Sci. V. 57. P. 779-795.

Foyer C. H., Noctor G. (2009). Redox regulation in photosynthetic organisms: signaling, acclimation, and practical implications // Antioxid. Redox Signal. – 2009. – 11. – P. 861–906. DOI: 10.1089/ars.2008.2177

Galiba G., Vanková R., Irma Tari, Bánfalvi Z., Poór P., Dobrev P., Boldizsár Á., Vágújfalvi A., Kocsy G. (2013) Hormones, NO, antioxidants and metabolites as key players in plant cold acclimation. Plant and Microbe Adaptations to Cold in a Changing World / Eds. R. Imai, M. Yoshida, N.Matsumoto. New York: Springer Science+Business Media, P. 73-88. DOI: 10.1007/978-1-4614-8253-6_7

Gautam V., Kaur R., Kohli S.K., Verma V., Kaur P., Singh R., Saini P., Arora S., Thukral A.K., Karpets Yu.V., Kolupaev Yu.E., Bhardwaj R. (2017). ROS compartmentalization in plant cells under abiotic stress condition // Reactive Oxygen Species and Antioxidant Systems in Plants: Role and Regulation under Abiotic Stress / Eds. Khan M.I.R., Khan N.A. – Springer, Singapore, 2017. – P. 89-114.

Gill, S. S., Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem. 48, 909–930. https://dx.doi.org/10.3390%2Fantiox9080681

Halliwell B. Reactive species and antioxidants (2006). Redox biology is the fundamental theme of aerobic life. Plant Physiol. 2006;141:312–322. doi: 10.1104/pp.106.077073

Hasanuzzaman М. M. H. M., Borhannuddin B. T. I. А, Khursheda P., Kamrun N., Jubayer A. M., Masayuki F. (2019) Regulation of Ascorbate-Glutathione Pathway in Mitigating Oxidative Damage in Plants Under Abiotic Stress. Antioxidants (Basel) Sep; 8(9): 384. https://doi.org/10.3390/antiox8090384

Hirayama T., Shinozaki K. You have free access to this content research on plant abiotic stress responses in the post-genome era: past, present and future // Plant J. – 2010. – 61. – P. 1041–1052. DOI: 10.1111/j.1365-313X.2010.04124.x

Jaspers P., Kangasjarvi J. (2010). Reactive oxygen species in abiotic stress signaling // Physiol. Plant. – 2010. – 138. – P. 405–413. DOI: 10.1111/j.1399-3054.2009.01321.x

Kaznachieieva M.S., Tsebrzhynskyi O.I. (2011). Doslidzhennia rozpodilu aktyvnosti tsytokhromoksydazy v tkanynakh tsybuli ripchastoi riznykh za rivnem stiikosti do khvorob sortiv [Investigation of the distribution of cytochrome oxidase activity in onion tissues of different varieties of disease resistance] Svit medytsyny ta biolohii. Poltava, 2011. 3. 10–12. (in Russian). https://womab.com.ua/upload/7.3/SMB-2011-03-010.pdf

Kolupaev Yu. Ye., Karpets Yu. V. Aktivnyye formy kisloroda i stressovyy signaling u rasteniy [Reactive oxygen species and stress signaling in plants] // Ukrainian biochemical journal. 2014. Vol. 86 (4). 18-35. (in Russian). http://nbuv.gov.ua/UJRN/BioChem_2014_86_4_4.

Kolupaev Yu. Ye., Karpets Yu. V. (2010). Formation of plants adaptive reactions to abiotic stressors influence. – Kyiv: Osnova, 2010. – 352 p. (In Russian). http://dspace.knau.kharkov.ua/jspui/bitstream/123456789/675/1/Kolupaev.Karpets.Monogr aphy.pdf

Kolupaev Yu.E., Karpets Yu.V. (2019). Reactive oxygen species, antioxidants, and plants resistance to influence of stressors. Kyiv: Logos, 2019. 277 p. http://dspace.knau.kharkov.ua/jspui/bitstream/123456789/1802/1/Kolupaev_Karpets -2019- ROS.pdf

Kolupaev Yu.E., Karpets Yu.V., Kabashnikova L.F. Antioxidative system of plants: cellular compartmentalization, protective and signaling functions, mechanisms of regulation // Applied Biochemistry and Microbiology. 2019. V. 55(5). P. 441-459. https://doi.org/10.1134/S0003683819050089

Kreslavski V. D., Allakhverdiev S. I., Los D. A., Kuznetsov V. V. Signaling role of reactive oxygen species in plants under stress // Russ. J. Plant Physiol. – 2012. – 59. – P. 141–154. DOI:10.1134/S1021443712020057

Kumar S., Malik J., Thakur P., Kaistha S., Sharma K.D., Upadhyaya H.D. (2011) Growth and metabolic responses of contrasting chickpea (Cicer arietinum L.) genotypes to chilling stress at reproductive phase. Acta Physiol. Plant. V. 33. P. 779-787. DOI 10.1007/s11738-010-0602-y

Los D. A., Zorina A., Sinetova M., Kryazhov S., Mironov K., Zinchenko V. V. (2010). Stress sensors and signal transducers in Cyanobacteria // Sensors. – 2010. – 10. – P. 2386–2415. doi: 10.3390/s100302386

Mittler, R. ROS Are Good. Trends in Plant Science (2017). – Vol. 22, N 1. – P. 11–19.
https://doi.org/10.1016/j.tplants.2016.08.002

Moller I. M. Plant mitochondria and oxidative stress: Electron transport, NADPH turnover, and metabolism of reactive oxygen species // Ann. Rev. Plant Physiol. Plant Mol. Biol. – 2001. – 52. – P. 561–591. DOI: 10.1146/annurev.arplant.52.1.561

Nonogaki H. Seed Biology Updates—Highlights and New Discoveries in Seed Dormancy and Germination Research. Front. Plant Sci. 2017;8:1–16. doi: 10.3389/fpls.2017.00524

Oracz K., Karpinski S. Phytohormones Signaling Pathways and ROS Involvement in Seed Germination. Front. Plant Sci. 2016;7:864. doi: 10.3389/fpls.2016.00864.

Pacheco J. H. L., M. A. Carballo, and M. E. Gonsebatt, (2018). “Antioxidants against environmental factor-induced oxidative stress,” in Nutritional Antioxidant Therapies: Treatments and Perspectives, K. H. Al-Gubory, Ed., vol. 8, pp. 189–215, Springer, Cham, Switzerland. https://doi.org/10.1007/978-3-319-67625-8

Pacheco J. H. L., M. A. Carballo, and M. E. Gonsebatt, (2018). “Antioxidants against environmental factor-induced oxidative stress,” in Nutritional Antioxidant Therapies: Treatments and Perspectives, K. H. Al-Gubory, Ed., vol. 8, pp. 189–215, Springer, Cham, Switzerland. https://doi.org/10.1007/978-3-319-67625-8

Polesskaja O.G. (2007) Rastitel'naja kletka i aktivnye formy kisloroda: uchebnoe posobie [Plant cell and reactive oxygen species]. KDU, Moskva. (in Russian).

Rhoads D. M., Umbach A. L., Subbaiah C. C., Siedow J. N. Mitochondrial reactive oxygen species. Contribution to oxidative stress and interorganellar signaling // Plant Physiol. – 2006. – 141. – P. 357–366. DOI: 10.1104/pp.106.079129

Sagi M., Fluhr R. Production of reactive oxygen species by plant NADPH oxidases // Plant Physiol. – 2006. – 141. – P. 336–340. DOI: 10.1104/pp.106.078089

Silvina M., Silvina P. D. J., José M. E. ROS Regulation of Polar Growth in Plant Cells. Plant Physiol. 2016 Jul; 171(3): 1593–1605. https://dx.doi.org/10.1104%2Fpp.16.00191

Suzuki N., Koussevitzky S., Mittler R., Miller G. ROS and redox signaling in the response of plants to abiotic stress // Plant Cell Environ. – 2012. – 35. – P. 259–270. DOI: 10.1111/j.1365- 3040.2011.02336.x

Vranova E., Inze D., Breusegem F. Signal transduction during oxidative stress // J. Exp. Bot. – 2002. – 53. – P. 1227–1236. https://doi.org/10.1093/jexbot/53.372.1227

Wolny, E.; Betekhtin, A.; Rojek, M.; Braszewska-Zalewska, A.; Lusinska, J.; Hasterok, R. Germination and the Early Stages of Seedling Development in Brachypodium distachyon. Int. J. Mol. Sci. 2018, 19, 2916. https://doi.org/10.3390/ijms19102916

Xu, D.-P.; Li, Y.; Meng, X.; Zhou, T.; Zhou, Y.; Zheng, J.; Zhang, J.-J.; Li, H.-B. (2017) Natural Antioxidants in Foods and Medicinal Plants: Extraction, Assessment, and Resources. Int. J. Mol. Sci. 18, 96. https://doi.org/10.3390/ijms18010096
Publicado
2022-05-06
Cómo citar
Bobrova, M., Holodaieva, O., Koval, S., Tsviakh, O., & Kucher, O. (2022). Características de los cambios en el equilibrio prooxidante- antioxidante de los tejidos durante la activación de la germinación de semillas. Revista De La Universidad Del Zulia, 13(37), 362-382. https://doi.org/10.46925//rdluz.37.23