Análisis crítico del potencial del plasma frío como tecnología no destructiva en el procesamiento alimentario: situación actual y tendencias futuras

Palabras clave: Innovación, procesamiento de alimentos, seguridad alimenticia, agricultura, hortalizas, agua residual

Resumen

El Plasma frío surge como una tecnología no térmica con distintas aplicaciones en los alimentos, con un mínimo efecto en su calidad. El objetivo de esta revisión fue analizar su potencial no destructivo en la mencionada industria, para la cual, se recopiló información de libros y artículos científicos de alto impacto, especialmente de los últimos años y fue estructurada enfatizando, la conservación alimentaria y otros campos del procesamiento. De acuerdo a las investigaciones consultadas, el plasma frío ha mostrado eficacia en la descontaminación microbiana e inactivación enzimática, en la mejora de las características sensoriales y fisicoquímicas de los alimentos, en la funcionalización del sistema de envasado y también en el tratamiento de aguas residuales generadas. El mecanismo de acción se basa en sus especies reactivas que, al tener contacto con los microorganismos y enzimas, los afecta hasta su muerte y degradación, respectivamente. En la interacción con los compuestos como el almidón, estas especies inducen en una mejora funcional significativa y preservan los termosensibles como las vitaminas. De igual manera ocurre con la carga microbiana y química de las aguas residuales, logrando su purificación. A pesar del enorme potencial detallado, al ser una tecnología relativamente nueva, se requiere de mayor investigación para suplir sus limitaciones, además de evaluar su uso sinérgicamente con otras técnicas para mejorar el proceso y sus resultados.

 

 

Descargas

La descarga de datos todavía no está disponible.

Biografía del autor/a

Vicente Tirado-Kulieva, Universidad Nacional de Frontera, Sullana, Perú.

Profesor, Universidad Nacional de Frontera, Sullana, Perú. 

William Rolando Miranda Zamora, Universidad Nacional de Frontera, Sullana. Perú.

Docente Investigador. Universidad Nacional de Frontera, Sullana. Perú. 

Nelly Luz Leyva Povis, Universidad Nacional de Piura. Perú

Docente Asociada. Universidad Nacional de Piura. Perú. 

Citas

Adebo, O., Molelekoa, T., Makhuvele, R., Adebiyi, J., Oyedeji, A., Gbashi, S., Adefisoye, M., Ogundele, O. & Njobeh, B. (2020). A review on novel non‐thermal food processing techniques for mycotoxin reduction. International Journal of Food Science & Technology. https://doi.org/10.1111/ijfs.14734

Akasapu, K., Ojah, N., Kumar, A., Jyoti, A. & Mishra, P. (2020). An innovative approach for iron fortification of rice using cold plasma. Food Research International. https://doi.org/10.1016/j.foodres.2020.109599

Alkawareek, M.Y., Gorman, S.P., Graham, W.G. & Gilmore, B.F. (2014). Potential cellular targets and antibacterial efficacy of atmospheric pressure non-thermal plasma. International Journal of Antimicrobial Agents, 43(2), 154-160

Almeida, F.D.L., Gomes, W.F., Cavalcante, R.S., Tiwari, B.K., Cullen, P.J., Frias, J.M., Bourke, P., Fernandes, F.A.N. & Rodrigues, S. (2017). Fructooligosaccharides integrity after atmospheric cold plasma and highpressure processing of a functional orange juice. Food Research International, 102, 282-290

Alves, E., Brito, E. & Rodrigues, S. (2020). Effects of cold plasma processing in food components. In: D. Bermúdez-Aguirre (Ed.), Advances in Cold Plasma Applications for Food Safety and Preservation (253-268). Massachusetts: Academic Press

Annapure, U.S. (2018). Application of Cold Plasm in Food Processing. In: Sharma, HK y Panesar, PS. (Ed.), Technologies in Food Processing (25-46). Massachusetts: Academic Press

Baggio, A., Marino, M., Innocente, N., Celotto, M. & Maifreni, M. (2020). Antimicrobial efect of oxidative technologies in food processing: an overview. European Food Research and Technology, 246, 669-692

Baier, M., Gorgen, M., Ehlbeck, J., Knorr, D., Herppich, W. & Schlüter, O. (2014). Non-thermal atmospheric pressure plasma: Screening for gentle process conditions and antibacterial efficiency on perishable fresh produce. Innovative Food Science and Emerging Technologies, 22, 147–157

Bao, Y., Reddivari, L. & Huang, J.Y. (2020a). Development of cold plasma pretreatment for improving phenolics extractability from tomato pomace. Innovative Food Science and Emerging Technologies, 65, 102445

Bao, Y., Reddivari, L. & Huang, J.Y. (2020b). Enhancement of phenolic compounds extraction from grape pomace by high voltage atmospheric cold plasma. LWT – Food Science and Technology, 133, 109970

Bermúdez-Aguirre, D., Wemlinger, D., Pedrow, P., Barbosa-Cánovas, G. & Garcia-Perez, M. (2013). Effect of atmospheric pressure cold plasma (APCP) on the inactivation of Escherichia coli in fresh produce. Food Control, 34(1), 149-157

Bourke, P., Ziuzina, D., Boehm, D., Cullen, P.J. & Keener, K. (2018). The Potential of Cold Plasma for Safe and Sustainable Food Production. Trends in Biotechnology, 36(6), 615-626

Bourke, P., Ziuzina, D., Han, L., Cullen, P.J. & Gilmore, B.F. (2017). Microbiological Interactions with Cold Plasma. Journal of Applied Microbiology, 123(2), 308-324

Charoux, C.M.G., Patange, A., Lamba, S., O’Donnell, C.P., Tiwari, B.K. & Scannell, A.G.M. (2020). Applications of nonthermal plasma technology on safety and quality of dried food ingredients. Journal of Applied Microbiology. https://doi.org/10.1111/jam.14823

Chen, Y.Q., Cheng, J.H. & Sun, D.W. (2019). Chemical, physical and physiological quality attributes of fruit and vegetables induced by cold plasma treatment: Mechanisms and application advances. Critical Reviews in Food Science and Nutrition, 60 (16), 2676-2690

Cheng, J.H., Xiaoye, L.V., Yuanyuan, P. & Sun, D.W. (2020). Foodborne bacterial stress responses to exogenous reactive oxygen species (ROS) induced by cold plasma treatments. Trends in Food Science & Technology, 103, 239-247

Chizoba, F.G., Sun, D.W. & Cheng, J.H. (2017). A review on recent advances in cold plasma technology for the food industry: Current applications and future trends. Trends in Food Science & Technology, 69(A), 46-58

Coutinho, N.M., Silveira, M.R., Rocha, R.S., Moraes, J., Ferreira, M.V.S., Pimentel, T.C., Freitas, M.Q., Silva, M.C., Raices, R.S.L., Ranadheera, C.S., Borges, F.O., Mathias, S.P., Fernandes, F.A.N., Rodrigues, S. & Cruz, A.G. (2018). Cold plasma processing of milk and dairy products. Trends in Food Science & Technology, 74, 56-68

Feizollahi, E., Misra, N.N. & Roopesh, M.S. (2020). Factors influencing antimicrobial efficacy of Dielectric Barrier Discharge (DBD) Atmospheric Cold Plasma (ACP) in food processing applications. Critical Reviews in Food Science and Nutrition. https://doi.org/10.1080/10408398.2020.1743967

Fellows, P.J. (2016). Food Processing Technology: Principles and Practice. United Kingdom: Woodhead Publishing

Fridman, A. (2008). Plasma chemistry. New York: Cambridge University Press

Gavahian, M. & Khaneghah, A.M. (2020). Cold plasma as a tool for the elimination of food contaminants: Recent advances and future trends. Critical Reviews in Food Science and Nutrition, 60(9), 1581-1592

Gavahian, M., Chu, Y.H., Khaneghah, A.M., Barba, F.J. & Misra, N.N. (2018). A critical analysis of the cold plasma induced lipid oxidation in foods. Trends in Food Science & Technology, 77, 32-41

Grzegorzewski, F., Rohn, S., Kroh, L.W., Geyer, M. & Schlüter, O. (2010). Surface morphology and chemical composition of lamb’s lettuce (Valerianella locusta) after exposure to a low -pressure oxygen plasma. Food Chemistry, 122(4), 1145 –1152

Han, Y., Cheng, J.H. & Sun, DW. (2019). Activities and conformation changes of food enzymes induced by cold plasma: A review. Critical Reviews in Food Science and Nutrition, 59(5), 794-811

Hati, S., Patel, M. & Yadav, D. (2018). Food bioprocessing by nonthermal plasma technology. Current Opinion in Food Science, 19, 85–91

Ji, Y., Hu, W., Liao, J., Jiang, A., Xiu, Z., Gaowa, S., Guan, Y., Yang, X., Feng, K. & Liu, C. (2020). Effect of atmospheric cold plasma treatment on antioxidant activities and reactive oxygen species production in postharvest blueberries during storage. Journal of the Science of Food and Agriculture. https://doi.org/10.1002/jsfa.10611

Jiang, B., Zheng, J. & Wu, M. (2016). Nonthermal Plasma for Effluent and Waste Treatment. In: Misra NN, Schlüter, O. y Cullen PJ. (Ed.), Cold Plasma in Food and Agriculture (309-342). Massachusetts: Academic Press

Kaluwahandi, N., Wei, L. &Muthukumarappan, K. (2020). Opportunities and Challenges of Cold Plasma in Food Processing. American Society of Agricultural and Biological Engineers (ASABE) Annual International Virtual Meeting 2000969. https://doi.org/10.13031/aim.202000969

Khani, M.R., Shokri, B. & Khajeh, K. (2017). Studying the Performance of Dielectric Barrier Discharge and Gliding Arc Plasma Reactors in Tomato Peroxidase Inactivation. Journal of Food Engineering, 197, 107-112

Kim, J.E., Lee, D.U. & Min, S.C. (2014). Microbial decontamination of red pepper powder by cold plasma. Food Microbiology, 38, 128-136

Kim, J.E., Oh, Y.J., Won, M.Y. & Min, S.C. (2017). Microbial decontamination of onion powder using microwave-powered cold plasma treatments. Food Microbiology, 62, 112-123

Lacombe, A., Niemira, B.A., Gurtler, J.B., Fan, X., Sites, J., Boyd, G. & Chen, H. (2015). Atmospheric Cold Plasma Inactivation of Aerobic Microorganisms on Blueberries and Effects on Quality Attributes. Food Microbiology, 46, 479-484

Li, N., Yu, J.J., Jin, N., Chen, Y., Li, S.H. & Chen, Y. (2020). Modification of the physicochemical and structural characteristics of zein suspension by dielectric barrier discharge cold plasma treatment. Journal of Food Science, 84(8), 2452-2460

Liao, X., Cullen, P.J., Muhammad, A.D., Jiang, Z., Ye, X., Liu, D. & Ding, T. (2020). Cold Plasma–Based Hurdle Interventions: New Strategies for Improving Food Safety. Food Engineering Reviews, 12, 321-332

Liao, X., Liu, D., Xiang, Q., Ahn, J., Chen, S., Ye, X., & Ding, T. (2017). Inactivation mechanisms of non-thermal plasma on microbes: A review. Food Control, 75, 83-91.

Lieberman, M. & Lichtenberg, A. (2005). Principles of plasma discharges and materials processing. Hoboken: John Wiley & Sons

Lunov, O., Churpita, O., Zablotskii, V., Deyneka, I.G., Meshkovskii, I.K., Jäger, A., Syková, E., Kubinová, S. & Dejneka, A. (2015). Non-thermal plasma mills bacteria: scanning electron microscopy observations. Applied Physics Letters, 106(5), 053703

Mandal, R., Singh, A. & Singh, A.P. (2018). Recent developments in cold plasma decontamination technology in the food industry. Trends in Food Science & Technology, 80, 93-103

Mir, S.A., Siddiqui, M.W., Dar, B.N., Shah, M.A., Wani, M.H., Roohinejad, S., Annor, G.A., Mallikarjunan, K., Chin, C.F. & Ali, A. (2020). Promising applications of cold plasma for microbial safety, chemical decontamination and quality enhancement in fruits. Journal of Applied Microbiology, 129(3), 474-485

Misra, N.N., Kaur, S., Tiwari, B., Kaur, A., Singh, N. & Cullen, P.J. (2015). Atmospheric pressure cold plasma (ACP) treatment of wheat flour. Food Hydrocolloids, 44, 115-121

Misra, N.N., Pankaj, S.K., Segat, A. & Ishikawa, K. (2016). Cold plasma interactions with enzymes in foods and model systems. Trends in Food Science & Technology, 55, 39-47

Misra, N.N., Patil, S., Moiseev, T., Bourke, P., Mosnier, J.P., Keener, K.M. & Cullen, P.J. (2014). In-package atmospheric pressure cold plasma treatment of strawberries. Journal of Food Engineering, 125, 131-138

Misra, N.N., Tiwari, B.K., Raghavarao, K.S.M.S. & Cullen, P.J. (2011). Nonthermal plasma inactivation of food-borne pathogens. Food Engineering Reviews, 3, 159–170

Misra, N.N., Yadav, B., Roopesh, M.S. & Jo, C. (2018). Cold Plasma for Effective Fungal and Mycotoxin Control in Foods: Mechanisms, Inactivation Effects, and Applications. Comprehensive Reviews in Food Science and Food Safety, 18, 106-120

Misra, N.N., Yepez, X. & Keener, K. (2019). In-package cold plasma technologies. Journal of Food Engineering, 244, 21-31

Mohamed, A.A., Al Shariff, S.M., Ouf, S.A., & Benghanem, M. (2016). Atmospheric pressure plasma jet for bacterial decontamination and property improvement of fruit and vegetable processing wastewater. Journal of Physics D: Applied Physics, 49(19), 195401

Mostafidi, M., Reza, M., Shirkhan, S. & Zahedi, M.T. (2020). A review of recent trends in the development of the microbial safety of fruits and vegetables. Trends in Food Science & Technology, 103, 321-332

Munekata, P.E.S., Domínguez, R., Peteiro, M. & Lorenzo, J.M. (2020). Influence of Plasma Treatment on the Polyphenols of Food Products—A Review. Foods, 9(7), 929

Niemira, B.A. (2012). Cold Plasma Decontamination of Foods. Annual Review of Food Science and Technology, 3, 125-142

Niemira, B.A. (2014). Decontamination of Foods by Cold Plasma. In: DW Sun (Ed.), Emerging Technologies for Food Processing (323-333). Massachusetts: Academic Press

Niemira, B.A. & Sites, J. (2008). Cold plasma inactivates Salmonella Stanley and Escherichia coli O157:H7 inoculated on golden delicious apples. Journal of Food protection, 71(7), 1357-1365

Oh Y.A., Roh S.H. & Min, S.C. (2016). Cold plasma treatments for improvement of the applicability of defatted soybean meal-based edible film in food packaging. Food Hydrocolloids, 58, 150–159

Ozen, E. & Singh, R.K. (2020). Atmospheric cold plasma treatment of fruit juices: A review. Trends in Food Science & Technology, 103, 144-151

Pan, Y., Cheng, J.H. & Sun, D.W. (2019a). Cold Plasma-Mediated Treatments for Shelf Life Extension of Fresh Produce: A Review of Recent Research Developments. Comprehensive Reviews in Food Science and Food Safety, 18(5), 1312-1326

Pan, Y., Zhang, Y., Cheng, J.H. &Sun, D.W. (2019b). Inactivation of Listeria Monocytogenes at various growth temperatures by ultrasound pretreatment and cold plasma. LWT - Food Science and Technology, 118, 108635

Pan, Y.W., Cheng, J.H. & Sun, D.W. (2020). Inhibition of fruit softening by cold plasma treatments: affecting factors and applications. Critical Reviews in Food Science and Nutrition.

https://doi.org/10.1080/10408398.2020.1776210

Pankaj S.K & Thomas, S. (2016). Cold Plasma Applications in Food Packaging. In: Misra NN, Schlüter, O. y Cullen PJ. (Ed.), Cold Plasma in Food and Agriculture (293-307). Massachusetts: Academic Press

Pankaj, S.K. & Keener, K.M. (2017). Cold plasma: background, applications and current trends. Current Opinion in Food Science, 16, 49-52

Pankaj, S.K., Bueno-Ferrer, C., Misra, N.N., Milosavljevic, V., O’Donnel, C.P., Bourke, P., Keener, K.M. & Cullen, P.J. (2014). Applications of cold plasma technology in food packaging. Trends In Food Science & Technology, 35, 5-17

Pankaj, S.K., Misra, N.N. & Cullen, P.J. (2013). Kinetics of tomato peroxidase inactivation by atmospheric pressure cold plasma based on dielectric barrier discharge. Innovative Food Science and Emerging Technologies, 19, 153-157

Pankaj, S.K., Wan, Z. & Keener, K.M. (2018). Effects of Cold Plasma on Food Quality: A Review. Foods, 7(1), 4

Pasquali, F., Stratakos, A.C., Koidis, A., Berardinelli, A., Cevoli, C., Ragni, L., Mancusi, R., Manfreda, G. & Trevisani, M. (2016). Atmospheric cold plasma process for vegetable leaf decontamination: A feasibility study on radicchio (red chicory, Cichorium intybus L.). Food Control, 60, 552-559

Patange, A., Boehm, D., Giltrap, M., Lu, P., Cullen, P.J. & Bourke, P. (2018). Assessment of the disinfection capacity and eco-toxicological impact of atmospheric cold plasma for treatment of food industry effluents. Science of the Total Environment, 631-632, 298-307

Patil, S., Bourke, P. & Cullen P.J. (2016). Principles of Nonthermal Plasma Decontamination. In: Misra NN, Schlüter, O. y Cullen PJ. (Ed.), Cold Plasm in Food and Agriculture (143-177). Massachusetts: Academic Press

Pérez-Andrés, J.M., Álvarez, C., Cullen, P.J. & Tiwari, B. (2.K019). Effect of cold plasma on the techno-functional properties of animal protein food ingredients. Innovative Food Science and Emerging Technologies, 58, 102205

Phan, K.T.K., Phan, H.T., Brennan, C.S. & Phimolsiripol, Y. (2017). Nonthermal plasma for pesticide and microbial elimination on fruits and vegetables: an overview. International Journal of Food Science and Technology, 52(10), 2127, 2137

Pinela, J. & Ferreira, I.C.F.R. (2017). Non-thermal Physical Technologies to Decontaminate and Extend the Shelf-life of Fruits and Vegetables: Trends Aiming at Quality and Safety. Critical Reviews in Food Science and Nutrition, 57(10), 2095-2111

Sarangapani, C., Patange, A., Bourke, P., Keener, K. & Cullen, P.J. (2018). Recent Advances in the Application of Cold Plasma Technology in Foods. Annual Review of Food Science and Technology, 9, 609-629

Schlüter, O., Ehlbeck, J., Hertel, C., Habermeyer, C., Roth, A., Engel, KH., Holzhauser, T., Knorr, D. & Eisenbrand, G. (2013). Opinion on the use of plasma processes for treatment of foods. Molecular Nutrition Food Research, 57(5), 920-927

Scholtz, V., Pazlarova, J., Souskova, H., Khun J. & Julak J. (2015). Nonthermal plasma — A tool for decontamination and disinfection. Biotechnology Advances, 33(6), 1108–1119

Selcuk, M., Oksuz, L. & Basaran, P. (2008). Decontamination of grains and legumes infected with Aspergillus spp. and Penicillum spp. by cold plasma treatment. Bioresource Technology, 99(11), 5104-5109

Sonawane, S. y Marar, T. & Patil, S. (2020). Non-thermal plasma: An advanced technology for food industry. Food Science and Technology International, 26(8), 727-740

Stoica, M., Alexe, P. & Mihalcea, L. (2014). Atmospheric cold plasma as new strategy for foods processing-an overview. Innovative Romanian Food Biotechnology, 15, 1-8

Surowzky, B., Fischer, A., Schlueter, O. & Knorr, D. (2013). Cold plasma effects on enzyme activity in a model food system. Innovative Food Science and Emerging Technologies, 19, 146-152

Surowzky, B., Frohling, A., Gottschalk, N., Schlüter, O. & Knorr, D. (2014). Impact of cold plasma on Citrobacter freundii in apple juice: Inactivation kinetics and mechanisms. International Journal of Food Microbiology, 174, 63-71

Thirumdas, R., Kadam, D. & Annapure, U.S. (2017). Cold Plasma: an Alternative Technology for the Starch Modification. Food Biophysics, 12, 129-139

Thirumdas, R., Saragapani, C., Ajinkya, M.T., Deshmukh, R.R. & Annapure, U.S. (2016). Influence of low pressure cold plasma on cooking and textural properties of brown rice. Innovative Food Science and Emerging Technologies, 37(A), 53-60

Thirumdas, R., Sarangapani, C. & Annapure, U.S. (2015). Cold Plasma: A novel Non-Thermal Technology for Food Processing. Food Biophysics, 10, 1-11

Zhao, N., Ge, L., Huanga, Y., Wang, Y., Wang, Y., Lai, H., Wang, Y., Zhua, Y. & Zhang, J. (2020). Impact of cold plasma processing on quality parameters of packaged fermented vegetable (Radish paocai) in comparison with pasteurization processing: Insight into safety and storage stability of products. Innovative Food Science and Emerging Technologies, 60, 102300

Ziuzina, D., Patil, S., Cullen, P.J., Keener, K.M. & Bourke, P. (2014). Atmospheric cold plasma inactivation of Escherichia coli, Salmonella enterica serovar Typhimurium and Listeria monocytogenes inoculated on fresh produce. Food Microbiology, 42, 109-116

Publicado
2021-01-12
Cómo citar
Tirado-Kulieva, V., Miranda Zamora, W. R., & Leyva Povis, N. L. (2021). Análisis crítico del potencial del plasma frío como tecnología no destructiva en el procesamiento alimentario: situación actual y tendencias futuras. Revista De La Universidad Del Zulia, 12(32), 284-316. https://doi.org/10.46925//rdluz.32.18