Atributos de penetración de calor en langostinos procesados térmicamente en envases de vidrio
Resumen
El procesado térmico es una operación vital en el área de la conservación de alimentos. La conserva en vidrio permite extender la durabilidad de los productos. Se estudiaron las características de penetración por calentamiento del producto procesado en retorta por aplicación de vapor de agua. Las conservas de langostino (Litopenaeus vannamei) contenidas en envases de vidrio y en medio de salmuera, se procesó térmicamente hasta valores mínimos de F0 de 5,16 min, 2,61 min, 1,06 min y 0,73 min a 121°C. Los valores de penetración de calor se registraron para cada minuto de procesamiento con el registrador de temperatura. Se observó que el tiempo para alcanzar la temperatura de retorta 121°C osciló entre 19 min a 27 min en vapor de agua. Los parámetros de penetración de calor de las conservas de langostinos en vidrio oscilaron entre fh entre 7,94 a 24,1 min y jh entre 0,66 a 2,65. El tiempo de proceso total pronosticado con el método de Ball modificado osciló entre 19,69 a 57,92 min para las conservas de langostinos en salmuera en vidrio esterilizadas en vapor de agua. Los atributos de penetración de calor, en las conservas de langostinos en salmuera en vidrio, permitieron lograr la esterilidad comercial.
Descargas
Citas
Abakarov, A.; Nuñez, M. 2013. Thermal food processing optimization: Algorithms and software. Journal of Food Engineering, 115(4), 428–442.
Abe, H.; Koyama, K.; Kawamura, S.; Koseki, S. 2018. Stochastic evaluation of Salmonella enterica lethality during thermal inactivation. International Journal of Food Microbiology, 285, 129–135.
Adepoju, M.A.; Omitoyin, B.O.; Mohan, C.O.; Zynudheen, A.A.2016. Heat penetration attributes of milkfish (Chanos chanos) thermal processed in flexible pouches: a comparative study between steam application and water immersion. Food Science & Nutrition, 5(3), 521–524.
Alexandre, E.M.C.; Brandão, T.R.S.; Silva, C.L.M. 2011. Modelling microbial load reduction in foods due to ozone impact. Procedia Food Science, 1, 836–841.
Augusto, P.E.D.; Tribst, A.A.L.; Cristianini, M. 2014. Thermal processes|Commercial sterility (Retort). Encyclopedia of Food Microbiology, 567–576.
Ball, C.O. 1923. Thermal process time for canned food. Bulletin of the National Research Council, Washington, DC, 7 Part 1, Number 37.
Ball, C.O. 1928. Mathematical solution of problems on thermal processing of canned food. Univ Calif Publ Public Health 1(2):145–245.
Barbosa-Canovas, G.V.; Ibarz, A. 2014. Introduction to food process engineering. CRC Press.
Berry, M.R. 1983. Prediction of come-up time correction factors for batch-type agitating and still retorts and the influence on thermal process calculations. Journal of Food Science, 48(4), 1293–1299.
Bignardi, C.; Cavazza, A.; Rinaldi, M.; Corradini, C.; Massini, R. 2013. Evaluation of thermal treatment markers in wheat flour-derived products cooked in conventional and in low-emissivity ovens. Food Chemistry, 140(4), 748–754.
Daryaei, H.; Balasubramaniam, V. M.; Yousef, A.E.; Legan, J.D.; Tay, A. 2016. Lethality enhancement of pressure-assisted thermal processing against Bacillus amyloliquefaciens spores in low-acid media using antimicrobial compounds. Food Control, 59, 234–242.
Datta, A.K. 1990. On the theoretical basis of the asymptotic semilogarithmic heat penetration curves used in food processing. Journal of Food Engineering, 12(3), 177–190.
Dilmaçünal, T.; Kuleaşan, H. 2018. Novel strategies for the reduction of microbial degradation of foods. Food Safety and Preservation, 481–520.
Dumitraşcu, L.; Stănciuc, N.; Stanciu, S.; Râpeanu, G. 2012. Thermal inactivation of lactoperoxidase in goat, sheep and bovine milk – A comparative kinetic and thermodynamic study. Journal of Food Engineering, 113(1), 47–52.
FDA. 2014. Guide to inspections of low acid canned food 5. Disponible en: https://www.fda.gov/inspections-compliance-enforcement-and-criminal-investigations/inspection-guides/guide-inspections-low-acid-canned-food-5-0.
Gao, T.; Tian, Y.; Zhu, Z.; Sun, D.-W. 2020. Modelling, responses and applications of time-temperature indicators (TTIs) in monitoring fresh food quality. Trends in Food Science & Technology, 99, 311-322.
Glass, K.; Marshall, K. 2013. Clostridium botulinum. Foodborne Infections and Intoxications, 371–387.
Holdsworth, S.D.; Simpson, R. 2015a. Optimization of Thermal Food Processing. Thermal Processing of Packaged Foods, 383–414.
Holdsworth, S.D.; Simpson, R. 2015b. Formula methods and analytical techniques. Thermal Processing of Packaged Foods, 219–250.
Holdsworth, S.D.; Simpson, R. 2015c. Heat Penetration in packaged foods. thermal processing of packaged foods, 161–195.
Hong, Y.-K.; Huang, L.; Yoon, W. B.; Liu, F.; Tang, J. 2016. Mathematical modeling and Monte Carlo simulation of thermal inactivation of non-proteolytic Clostridium botulinum spores during continuous microwave-assisted pasteurization. Journal of Food Engineering, 190, 61–71.
IFT/FDA. 2000. Kinetics of microbial inactivation for alternative food processing technologies. Journal of Food Science, 65, s8.
Ikegami, Y. 1974. Effect of various factors in the come-up time on processing of canned foods with steam. Report of Toyo Institute of Food Technology (in Japanese), 11, 92–98.
Johnson, E.A. 2014. Clostridium | Clostridium botulinum. Encyclopedia of Food Microbiology, 458–462.
Kyereme, M.; Swartzel, K.R.; Farkas, B.E. 1999. New line intersection procedure for the equivalent point method of thermal evaluation. Journal of Food Science, 64(4), 565–570.
Li, S.; Zhilyaev, S.; Gallagher, D.; Subbiah, J.; Dvorak, B. 2019. Sustainability of safe foods: Joint environmental, economic and microbial load reduction assessment of antimicrobial systems in U.S. beef processing. Science of The Total Environment, 691, 252–262.
Lindström, M.; Kiviniemi, K.; Korkeala, H. 2006. Hazard and control of group II (non-proteolytic) Clostridium botulinum in modern food processing. International Journal of Food Microbiology, 108(1), 92–104.
Ling, B.; Tang, J.; Kong, F.; Mitcham, E.J.; Wang, S. 2014. Kinetics of food quality changes during thermal processing: a Review. Food and Bioprocess Technology, 8(2), 343–358.
Liu, B.; Huang, Q.; Wang, P. 2020. Influence of surrounding gas temperature on thermocouple measurement. Case Studies in Thermal Engineering, 19, 100627.
Majumdar, R.K.; Roy, D.; Saha, A. 2016. Textural and sensory characteristics of retort-processed freshwater prawn (Macrobrachium rosenbergii) in curry medium. International Journal of Food Properties, 20(11), 2487–2498.
Membré, J.-M.; van Zuijlen, A. 2011. A probabilistic approach to determine thermal process setting parameters: Application for commercial sterility of products. International Journal of Food Microbiology, 144(3), 413–420.
Miranda-Zamora, W.R.; Sanchez-Chero, M.J.; Sanchez-Chero, J.A. 2020a. Software for the determination of the time and the f value in the thermal processing of packaged foods using the modified ball method. Intelligent human systems integration 2020. Proceedings of the 3rd International Conference on Intelligent Human Systems Integration (IHSI 2020): Integrating People and Intelligent Systems, February 19-21, 2020, Modena, Italy, 498–502.
Miranda-Zamora, W.R.; Villarreyes, S.S.C.; Povis, N.L.L.; Panca, C.M.A.; Morales, M.V.S. 2020b. A new mathematical solution for packaged food thermal processing. Advances in Intelligent Systems and Computing, 2020, 1216 AISC, 383–387
Mohan, C.O.; Ravishankar, C.N.; Srinivasa Gopal, T.K.; Bindu, J. 2008. Thermal processing of prawn “kuruma” in retortable pouches and aluminium cans. International Journal of Food Science & Technology, 43(2), 200–207.
Mohan, C.O.; Remya, S.; Murthy, L.N.; Ravishankar, C.N.; Asok Kumar, K. 2015. Effect of filling medium on cooking time and quality of canned yellowfin tuna (Thunnus albacares). Food Control, 50, 320–327.
Nunes, R.V.; Swartzel, K.R.; Ollis, D.F. 1993. Thermal evaluation of food processes: The role of a reference temperature. Journal of Food Engineering, 20(1), 1–15.
Özilgen, M. 2011. Handbook of food process modeling and statistical quality control: with extensive MATLAB applications. CRC Press.
Rahman, M.S.; Guizani, N.; Al-Ruzeiki, M.H. 2004. D- and Z-values of microflora in tuna mince during moist- and dry-heating. LWT - Food Science and Technology, 37(1), 93–98.
Rifna, E.J.; Singh, S.K.; Chakraborty, S.; Dwivedi, M. 2019. Effect of thermal and non-thermal techniques for microbial safety in food powder: Recent advances. Food Research International, 126, 108654.
Silva, F.V.M.; Gibbs, P.A. 2010. Non-proteolytic Clostridium botulinum spores in low-acid cold-distributed foods and design of pasteurization processes. Trends in Food Science & Technology, 21(2), 95–105.
Simpson, R.; Almonacid, S.; Nuñez, H.; Urtubia, A.; Teixeira, A.A. 2012. Is there a need for the come-up time correction factor in Ball’s formula method? A Critical Analysis. Food Engineering Reviews, 4(2), 107–113.
Stoforos, N.G. 1991. On Ball’s formula method for thermal process calculations. Journal of Food Process Engineering, 13(4), 255–268.
Stoforos, N.G. 2010. Thermal process calculations through Ball’s original formula method: a critical presentation of the method and simplification of its use through regression equations. Food Engineering Reviews, 2(1), 1–16.
Stoforos, N.G.; Noronha, J.; Hendrickx, M.; Tobback, P.; Hayakawa, K. 1997. A critical analysis of mathematical procedures for the evaluation and design of in‐container thermal processes for foods. Critical Reviews in Food Science and Nutrition, 37(5), 411–441.
Succar, J.; Kayakawa, K.-I. 1982. Prediction of time correction factor for come-up heating of packaged liquid food. Journal of Food Science, 47(2), 614–618.
Taylor, R.H.; Dunn, M.L.; Ogden, L.V.; Jefferies, L.K.; Eggett, D.L.; Steele, F. M. 2013. Conditions associated with Clostridium sporogenes growth as a surrogate for Clostridium botulinum in nonthermally processed canned butter. Journal of Dairy Science, 96(5), 2754–2764.
Terajima, Y. 2016. Prediction of come-up time correction factor for heat processing of food in containers using Come-Up heating medium temperatures. Journal of Food Process Engineering, 40(2), e12361.
Tola, Y.B.; Ramaswamy, H.S. 2018. Novel processing methods: updates on acidified vegetables thermal processing. Current Opinion in Food Science, 23, 64–69.
Tribuzi, G.; de Aragão, G.M.F.; Laurindo, J.B. 2015. Processing of chopped mussel meat in retort pouch. Food Science and Technology, 35(4), 612–619.
Tucker, G.S.; Featherstone, S.; Miranda-Zamora, W.R. 2020. Fundamentos del procesamiento térmico de alimentos. AMV Ediciones.
Wang, J.; Jayaprakasha, G.K.; Patil, B.S. 2019. Chemometric characterization of 30 commercial thermal and cold processed juices using UPLC-QTOF-HR-MS fingerprints. LWT, 114, 108322.
Yang, Y.; Achaerandio, I.; Pujolà, M. 2016. Effect of the intensity of cooking methods on the nutritional and physical properties of potato tubers. Food Chemistry, 197, 1301–1310.
Zhang, S.; Zhang, L.; Lan, R.; Zhou, X.; Kou, X.; Wang, S. 2018. Thermal inactivation of Aspergillus flavus in peanut kernels as influenced by temperature, water activity and heating rate. Food Microbiology, 76, 237–244.
Copyright
La Revista de la Universidad del Zulia declara que reconoce los derechos de los autores de los trabajos originales que en ella se publican; dichos trabajos son propiedad intelectual de sus autores. Los autores preservan sus derechos de autoría y comparten sin propósitos comerciales, según la licencia adoptada por la revista..
Esta obra está bajo la licencia:
Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)