Drug delivery via α-Cyclodextrin: A Statistical-Nucleus Independent Chemical Shifts (S-NICS) study

  • Hediyeh Sadat Ghazimokri Universidad del Zulia
  • Majid Monajjemi Department of Chemical Engineering, Central Tehran Branch, Islamic Azad University
  • Hossein Aghaie Department of Chemistry, Science and Research Branch, Islamic Azad University


This study aims to investigate a novel method by using nucleus independent chemical shifts or S-NICS method of cyclo-dextrin. Monajjemi et.al (2008 a, 2015) has exhibited this novel method which so called “S-NICS” a few years ago. This program is arranged to calculate the aromaticities in some non-benzene rings. As the asymmetry (η) and skew (κ) parameters are fluctuated in a short and are alternative in lengthy distances, the S-NICS is a certain criterion for estimating the aromaticity. By generation of pseudo-random numbers in a Monte Carlo calculation which distributed in different function, the maximum abundant of skew and asymmetry parameters have been calculated for (η), (κ), and lastly the modified isotropy ( ) has been calculated for α-Cyclodextrin as an electromagnetic criterion. The results revealed that positive S-NICS and NICS values for α-Cyclodextrin indicate anti-aromaticity. It was observed from the values of (η), (κ) based on our calculations for α-Cyclodextrin is negatives which are depending on the distances to the center of those rings. At last, by this work it has been presented a schematic diagram of S-NICS for post-ab-initio calculations.


La descarga de datos todavía no está disponible.

Biografía del autor/a

Hediyeh Sadat Ghazimokri, Universidad del Zulia
Profesor de la Universidad del Zulia
Majid Monajjemi, Department of Chemical Engineering, Central Tehran Branch, Islamic Azad University
Professor of Department of Chemical Engineering, Central Tehran Branch, Islamic Azad University
Hossein Aghaie, Department of Chemistry, Science and Research Branch, Islamic Azad University
Professor of Department of Chemistry, Science and Research Branch, Islamic Azad University


Anet, F.A.L., O’Leary, D.J. (1992). The Shielding Tensor, Part II: Understanding its Strange Effects on Relaxation. Concepts Magn. Reson. http://doi.org/10.1002/cmr.1820040103.

Ardalan, T., Ardalan, P., Monajjemi, M. (2014). Nano Theoretical Study of a C16 Cluster as a Novel Material for Vitamin C Carrier. Fullerenes, Nanotubes and Carbon Nanostructures. http://doi.org/10.1080/1536383X.2012.717561.

Beenakker, J. J. M., Knaap, H. F. P., Sanctuary, B. C., (1973). in Transport Phenomena, AIP Conference Proceedings, edited by J. Kestin, (American Institute of Physics, New York). 11, 21

Bhaskara-Amrit, U.R., Agrawa, P., Warmoeskerken, M. (2011). Application of β-Cyclodextrin in textiles. AUTEX Res J. http://doi.org/No4-2011/0020_11.

Boonyarattanakalin, K., Wolschann, P., Toochinda, P., Lawtrakul, L.. (2012). Molecular dynamics simulations of UC781-cyclodextrins inclusion complexes in aqueous solution. Eur J Pharm Sci. http://doi.org/10.1016/j.ejps.2012.08.004.

Del Valle, E.M.M. (2003). Cyclodextrins and their uses: a review. Prpcbio. http://doi.org/10.1016/S0032-9592(03)00258-9.

Feixas, F., Matito, E., Poater, J., Solà, M. (2008). On the performance of some aromaticity indices: a critical assessment using a test set. J. Comput. Chem. http://doi.org/10.1002/jcc.20914.

Fermeglia, M., Ferrone, M., Lodi, A., Pricl, S. (2003). Host–guest inclusion complexes between anticancer drugs and β-cyclodextrin: computational studies. Carbohyd Polym. http://doi.org/10.1016/S0144-8617(03)00011-0.

Fias, S., Van Damme, S., Bultinck, P. (2008). Multidimensionality of Delocalization Indices and Nucleus Independent Chemical Shifts in Polycyclic Aromatic Hydrocarbons. J. Comput. Chem. http://doi.org/10.1002/jcc.21520.

Frueh, D. (2002). Internal motions in proteins and interference effects in nuclear magnetic resonance. Prog. Nucl. Magn. Reson. Spectrosc. http://doi.org/10.1016/S0079-6565(02)00051-1.

Ghatee, M.H., Sedghamiz, T. (2014). Chiral recognition of Propranolol enantiomers by β-Cyclodextrin: Quantum chemical calculation and molecular dynamics simulation studies. J. Chem. Phys. http://doi.org/10.1016/j.chemphys.2014.10.008.

Hehre, W.J., Ditchfield, R., Radom, L., Pople, J.A. (1970). Molecular orbital theory of the electronic structure of organic compounds. V. Molecular theory of bond separation. J. Am. Chem. Soc. http://doi.org/10.1021/ja00719a006.

Herzfeld, J., Berger, A. E. (1980). Sideband intensities in NMR spectra of samples spinning at the magic angle. J. Chem. Phys. http://doi.org/10.1063/1.440136

Ibrahim, A.S.S., Al-Salamah, A.A., El-Toni, A.M., El-Tayeb, M.A., Elbadawi, Y.B. (2013) Immobilization of cyclodextrin glucanotransferase on aminopropyl-functionalized silica-coated superparamagnetic nanoparticles. Bio Electron J Bio. http://doi.org/10.2225/vol16-issue6-fulltext-8.

Ilkhani, A.R., Monajjemi, M. (2015). The pseudo Jahn–Teller effect of puckering in pentatomic unsaturated rings C4AE5, A= N, P, As, E= H, F, Cl. M. Computational and Theoretical Chemistry. http://doi.org/10.1016/j.molstruc.2015.05.029.

Jiao, H., Schleyer, P.V.R. (1995). Antiaromaticity: Evidence from magnetic criteria. J. Am. Chem. Soc. (1995). http://doi.org/10.1063/1.47865.

Katritzky, A.R., Barczynski, P., Musumarra, G., Pisano, D., Szafran, M. (1989) Aromaticity as a Quantitative Concept. 1. A Statistical Demonstration of the Orthogonality of “Classical” and “Magnetic” Aromaticity in Five- and Six-Membered Heterocycles. J. Am. Chem. Soc. http://doi.org/10.1021/ja00183a002.

Kruszewski, J., Krygowski, T.M. (1972). Definition of aromaticity basing on the harmonic oscillator model. Tetrahedron Letters. http://doi.org/10.1016/S0040-4039(01)94175-9

Luginbhl, P., Wuthrich, K. (2002) Semi-classical nuclear spin relaxation theory revisited for use with biological macromolecules. Progress in Nuclear Magnetic Resonance Spectroscopy. http://doi.org/10.1016/s0079-6565(01)00043-7.

Mahdavian, L., Monajjemi, M. (2010). Alcohol sensors based on SWNT as chemical sensors: Monte Carlo and Langevin dynamics simulation. Microelectronics Journal. http://doi.org/10.1016/j.mejo.2010.01.011.

Martin, N.H., Nance, K. H. (2002). Modeling through-space magnetic shielding over ethynyl, cyano, and nitro groups. J. Mol. Graphics Modell. http://doi.org/10.1016/S1093-3263(02)00120-1.

Mason, J. (1993). Conventions for the reporting of nuclear magnetic shielding (or shift) tensors suggested by participants in the NATO ARW on NMR shielding constants. Solid State Nucl. Magn. Reson. http://doi.org/10.1016/0926-2040(93)90010-K.

Monajjemi, M. (2012). Quantum investigation of non-bonded interaction between the B15N15 ring and BH2NBH2 (radical, cation, anion) systems: A nano molecularmotor. Struct. Chem. http://doi.org/10.1007/s11224-011-9895-8.

Monajjemi, M. (2013). None bonded interaction between BnNn (stator) and BN (-, 0, +) B (rotor) systems: A quantum rotation in IR region. Chemical Physics. http://doi.org/10.1007/s11224-011-9895-8.

Monajjemi, M., Boggs, J.E. (2013). A new generation of BnNn rings as a supplement to boron nitride tubes and cages. J. Phys. Chem. A. http://doi.org/10.1021/jp312073q.

Monajjemi, M., Chahkandi, B. (2005). Theoretical investigation of hydrogen bonding in Watson-Crick, Hoogestein and their reversed and other models: Comparison and analysis for configurations of adenine-thymine base pairs in 9 models. Journal of Molecular Structure: THEOCHEM. (2005). http://doi.org/10.1016/j.theochem.2004.09.048.

Monajjemi, M., Falahati, M., Mollaamin, F. (2013). Computational investigation on alcohol nanosensors in combination with carbon nanotube: a Monte Carlo and ab initio simulation. Ionics. http://doi.org/10.1007/s11581-012-0708-x.

Monajjemi, M., Honarparvar, B., Nasseri, S.M., Khaleghian, M. (2009) NQR and NMR study of hydrogen bonding interactions in anhydrous and monohydrated guanine cluster model: a computational study. Journal of Structural Chemistry.. http://doi.org/10.1007/s10947-009-0009-z.

Monajjemi, M., Karachi, N., Mollaamin, F. (2014). The investigation of sequence-dependent interaction of messenger RNA binding to carbon nanotube. Fullerenes, Nanotubes and Carbon Nanostructures. http://doi.org/10.1080/1536383X.2012.717557.

Monajjemi, M., Ketabi, S., Amiri, A. (2006). Monte Carlo simulation study of melittin: Protein folding and temperature dependence. A. Russian Journal of Physical Chemistry. (2006). http://doi.org/10.1134/S0036024406130103.

Monajjemi, M., Khaleghian, M. (2011). EPR Study of Electronic Structure of [CoF6] 3− and B18N18 Nano Ring Field Effects on Octahedral Complex. J. Cluster Sci. http://doi.org/10.1007/s10876-011-0414-2.

Monajjemi, M., Lee, V.S., Khaleghian, M., Honarparvar, B., Mollaamin, F. (2010). Theoretical description of electromagnetic nonbonded interactions of radical, cationic, and anionic NH2BHNBHNH2 inside of the B18N18 nanoring. J. Phys. Chem. C. http://doi.org/10.1021/jp104274z.

Monajjemi, M., Mohammadian, N.T. (2015). S-NICS: An Aromaticity Criterion for Nano Molecules. J Comput Theo Nano. http://doi.org/10.1166/jctn.2015.4458.

Monajjemi, M., Rajaeian, E., Mollaamin, F., Naderi, F., Saki, S. (2008 a). Investigation of NMR shielding tensors in 1, 3 dipolar cycloadditions: solvents dielectric effect. Physics and Chemistry of Liquids. http://doi.org/10.1080/00319100601124369.

Monajjemi, M., Razavian, M.H., Mollaamin, F., Naderi, F., Honarparvar, B. (2008 b). A theoretical thermochemical study of solute-solvent dielectric effects in the displacement of codon-anticodon base pairs. Russian Journal of Physical Chemistry A. (2008). http://doi.org/10.1134/S0036024408130207.

Pan, W., Zhang, D., Zhan, J.: (2011) Theoretical investigation on the inclusion of TCDD with β-cyclodextrin by performing QM calculations and MD simulations. J Hazard Mater. http://doi.org/10.1016/j.jhazmat.2011.07.010.

Ramírez, M.; Migliore, B.; Guío, J.; (2011). Avances en la síntesis de los sistemas 1-,2- y 3-benzazepinas y su aplicación en el diseño de nuevos compuestos con actividad farmacológica en el Sistema Nervioso Central, Revista de la Universidad del Zulia, 2 (3), 7-33

Samiei Soofiand, N., Monajjemi, M.: (2016) A study of Fe3O4@ Si18O27 catalyst through Statistical-Nucleus Independent Chemical Shifts (S-NICS) method. Orien J Chem. (2016). http://doi.org/10.13005/ojc/320504

Schleyer, P.V.R., Jiao, H., van Eikema Hommes, N.J.R., Malkin, V.G., Malkina, O.L.: (1997). An Evaluation of the Aromaticity of Inorganic Rings: Refined Evidence from Magnetic Properties. J. Am. Chem. Soc. http://doi.org/10.1021/ja9719135.

Schleyer, P.V.R., Maerker, C., Dransfeld, A., Jiao, H., van Eikema Hommes, N.J.R. (1996) Nucleus-Independent Chemical Shifts: A Simple and Efficient Aromaticity. Probe. J. Am. Chem. Soc. http://doi.org/10.1021/ja960582d.

Stepien, B.T., Krygowski, T.M., Cyranski, M.K., Mlochowski, J., Orioli, P., Abbate, F. (2004). How far is the π‐electron delocalization of the phenanthrene moiety modified in the aza‐analogues and their N‐oxides. ARKIVOC. (2004). http://doi.org/10.3998/ark.5550190.0005.316.

Yahyaei, H., Monajjemi, M.: (2014) Theoretical study of different solvent and temperature effects on double-walled carbon nanotubes (DWNTs) and calixarene with amino acid: A QM/MM study. Fullerenes, Nanotubes and Carbon Nanostructures. http://doi.org/10.1080/1536383X.2012.684190.

Cómo citar
Ghazimokri, H. S., Monajjemi, M., & Aghaie, H. (2020). Drug delivery via α-Cyclodextrin: A Statistical-Nucleus Independent Chemical Shifts (S-NICS) study. Revista De La Universidad Del Zulia, 11(29), 98-113. https://doi.org/10.46925/rdluz.29.07