Drug delivery via α-Cyclodextrin: A Statistical-Nucleus Independent Chemical Shifts (S-NICS) study
Resumen
This study aims to investigate a novel method by using nucleus independent chemical shifts or S-NICS method of cyclo-dextrin. Monajjemi et.al (2008 a, 2015) has exhibited this novel method which so called “S-NICS” a few years ago. This program is arranged to calculate the aromaticities in some non-benzene rings. As the asymmetry (η) and skew (κ) parameters are fluctuated in a short and are alternative in lengthy distances, the S-NICS is a certain criterion for estimating the aromaticity. By generation of pseudo-random numbers in a Monte Carlo calculation which distributed in different function, the maximum abundant of skew and asymmetry parameters have been calculated for (η∗), (κ∗), and lastly the modified isotropy ( ) has been calculated for α-Cyclodextrin as an electromagnetic criterion. The results revealed that positive S-NICS and NICS values for α-Cyclodextrin indicate anti-aromaticity. It was observed from the values of (η∗), (κ∗) based on our calculations for α-Cyclodextrin is negatives which are depending on the distances to the center of those rings. At last, by this work it has been presented a schematic diagram of S-NICS for post-ab-initio calculations.
Descargas
Citas
Anet, F.A.L., O’Leary, D.J. (1992). The Shielding Tensor, Part II: Understanding its Strange Effects on Relaxation. Concepts Magn. Reson. http://doi.org/10.1002/cmr.1820040103.
Ardalan, T., Ardalan, P., Monajjemi, M. (2014). Nano Theoretical Study of a C16 Cluster as a Novel Material for Vitamin C Carrier. Fullerenes, Nanotubes and Carbon Nanostructures. http://doi.org/10.1080/1536383X.2012.717561.
Beenakker, J. J. M., Knaap, H. F. P., Sanctuary, B. C., (1973). in Transport Phenomena, AIP Conference Proceedings, edited by J. Kestin, (American Institute of Physics, New York). 11, 21
Bhaskara-Amrit, U.R., Agrawa, P., Warmoeskerken, M. (2011). Application of β-Cyclodextrin in textiles. AUTEX Res J. http://doi.org/No4-2011/0020_11.
Boonyarattanakalin, K., Wolschann, P., Toochinda, P., Lawtrakul, L.. (2012). Molecular dynamics simulations of UC781-cyclodextrins inclusion complexes in aqueous solution. Eur J Pharm Sci. http://doi.org/10.1016/j.ejps.2012.08.004.
Del Valle, E.M.M. (2003). Cyclodextrins and their uses: a review. Prpcbio. http://doi.org/10.1016/S0032-9592(03)00258-9.
Feixas, F., Matito, E., Poater, J., Solà, M. (2008). On the performance of some aromaticity indices: a critical assessment using a test set. J. Comput. Chem. http://doi.org/10.1002/jcc.20914.
Fermeglia, M., Ferrone, M., Lodi, A., Pricl, S. (2003). Host–guest inclusion complexes between anticancer drugs and β-cyclodextrin: computational studies. Carbohyd Polym. http://doi.org/10.1016/S0144-8617(03)00011-0.
Fias, S., Van Damme, S., Bultinck, P. (2008). Multidimensionality of Delocalization Indices and Nucleus Independent Chemical Shifts in Polycyclic Aromatic Hydrocarbons. J. Comput. Chem. http://doi.org/10.1002/jcc.21520.
Frueh, D. (2002). Internal motions in proteins and interference effects in nuclear magnetic resonance. Prog. Nucl. Magn. Reson. Spectrosc. http://doi.org/10.1016/S0079-6565(02)00051-1.
Ghatee, M.H., Sedghamiz, T. (2014). Chiral recognition of Propranolol enantiomers by β-Cyclodextrin: Quantum chemical calculation and molecular dynamics simulation studies. J. Chem. Phys. http://doi.org/10.1016/j.chemphys.2014.10.008.
Hehre, W.J., Ditchfield, R., Radom, L., Pople, J.A. (1970). Molecular orbital theory of the electronic structure of organic compounds. V. Molecular theory of bond separation. J. Am. Chem. Soc. http://doi.org/10.1021/ja00719a006.
Herzfeld, J., Berger, A. E. (1980). Sideband intensities in NMR spectra of samples spinning at the magic angle. J. Chem. Phys. http://doi.org/10.1063/1.440136
Ibrahim, A.S.S., Al-Salamah, A.A., El-Toni, A.M., El-Tayeb, M.A., Elbadawi, Y.B. (2013) Immobilization of cyclodextrin glucanotransferase on aminopropyl-functionalized silica-coated superparamagnetic nanoparticles. Bio Electron J Bio. http://doi.org/10.2225/vol16-issue6-fulltext-8.
Ilkhani, A.R., Monajjemi, M. (2015). The pseudo Jahn–Teller effect of puckering in pentatomic unsaturated rings C4AE5, A= N, P, As, E= H, F, Cl. M. Computational and Theoretical Chemistry. http://doi.org/10.1016/j.molstruc.2015.05.029.
Jiao, H., Schleyer, P.V.R. (1995). Antiaromaticity: Evidence from magnetic criteria. J. Am. Chem. Soc. (1995). http://doi.org/10.1063/1.47865.
Katritzky, A.R., Barczynski, P., Musumarra, G., Pisano, D., Szafran, M. (1989) Aromaticity as a Quantitative Concept. 1. A Statistical Demonstration of the Orthogonality of “Classical” and “Magnetic” Aromaticity in Five- and Six-Membered Heterocycles. J. Am. Chem. Soc. http://doi.org/10.1021/ja00183a002.
Kruszewski, J., Krygowski, T.M. (1972). Definition of aromaticity basing on the harmonic oscillator model. Tetrahedron Letters. http://doi.org/10.1016/S0040-4039(01)94175-9
Luginbhl, P., Wuthrich, K. (2002) Semi-classical nuclear spin relaxation theory revisited for use with biological macromolecules. Progress in Nuclear Magnetic Resonance Spectroscopy. http://doi.org/10.1016/s0079-6565(01)00043-7.
Mahdavian, L., Monajjemi, M. (2010). Alcohol sensors based on SWNT as chemical sensors: Monte Carlo and Langevin dynamics simulation. Microelectronics Journal. http://doi.org/10.1016/j.mejo.2010.01.011.
Martin, N.H., Nance, K. H. (2002). Modeling through-space magnetic shielding over ethynyl, cyano, and nitro groups. J. Mol. Graphics Modell. http://doi.org/10.1016/S1093-3263(02)00120-1.
Mason, J. (1993). Conventions for the reporting of nuclear magnetic shielding (or shift) tensors suggested by participants in the NATO ARW on NMR shielding constants. Solid State Nucl. Magn. Reson. http://doi.org/10.1016/0926-2040(93)90010-K.
Monajjemi, M. (2012). Quantum investigation of non-bonded interaction between the B15N15 ring and BH2NBH2 (radical, cation, anion) systems: A nano molecularmotor. Struct. Chem. http://doi.org/10.1007/s11224-011-9895-8.
Monajjemi, M. (2013). None bonded interaction between BnNn (stator) and BN (-, 0, +) B (rotor) systems: A quantum rotation in IR region. Chemical Physics. http://doi.org/10.1007/s11224-011-9895-8.
Monajjemi, M., Boggs, J.E. (2013). A new generation of BnNn rings as a supplement to boron nitride tubes and cages. J. Phys. Chem. A. http://doi.org/10.1021/jp312073q.
Monajjemi, M., Chahkandi, B. (2005). Theoretical investigation of hydrogen bonding in Watson-Crick, Hoogestein and their reversed and other models: Comparison and analysis for configurations of adenine-thymine base pairs in 9 models. Journal of Molecular Structure: THEOCHEM. (2005). http://doi.org/10.1016/j.theochem.2004.09.048.
Monajjemi, M., Falahati, M., Mollaamin, F. (2013). Computational investigation on alcohol nanosensors in combination with carbon nanotube: a Monte Carlo and ab initio simulation. Ionics. http://doi.org/10.1007/s11581-012-0708-x.
Monajjemi, M., Honarparvar, B., Nasseri, S.M., Khaleghian, M. (2009) NQR and NMR study of hydrogen bonding interactions in anhydrous and monohydrated guanine cluster model: a computational study. Journal of Structural Chemistry.. http://doi.org/10.1007/s10947-009-0009-z.
Monajjemi, M., Karachi, N., Mollaamin, F. (2014). The investigation of sequence-dependent interaction of messenger RNA binding to carbon nanotube. Fullerenes, Nanotubes and Carbon Nanostructures. http://doi.org/10.1080/1536383X.2012.717557.
Monajjemi, M., Ketabi, S., Amiri, A. (2006). Monte Carlo simulation study of melittin: Protein folding and temperature dependence. A. Russian Journal of Physical Chemistry. (2006). http://doi.org/10.1134/S0036024406130103.
Monajjemi, M., Khaleghian, M. (2011). EPR Study of Electronic Structure of [CoF6] 3− and B18N18 Nano Ring Field Effects on Octahedral Complex. J. Cluster Sci. http://doi.org/10.1007/s10876-011-0414-2.
Monajjemi, M., Lee, V.S., Khaleghian, M., Honarparvar, B., Mollaamin, F. (2010). Theoretical description of electromagnetic nonbonded interactions of radical, cationic, and anionic NH2BHNBHNH2 inside of the B18N18 nanoring. J. Phys. Chem. C. http://doi.org/10.1021/jp104274z.
Monajjemi, M., Mohammadian, N.T. (2015). S-NICS: An Aromaticity Criterion for Nano Molecules. J Comput Theo Nano. http://doi.org/10.1166/jctn.2015.4458.
Monajjemi, M., Rajaeian, E., Mollaamin, F., Naderi, F., Saki, S. (2008 a). Investigation of NMR shielding tensors in 1, 3 dipolar cycloadditions: solvents dielectric effect. Physics and Chemistry of Liquids. http://doi.org/10.1080/00319100601124369.
Monajjemi, M., Razavian, M.H., Mollaamin, F., Naderi, F., Honarparvar, B. (2008 b). A theoretical thermochemical study of solute-solvent dielectric effects in the displacement of codon-anticodon base pairs. Russian Journal of Physical Chemistry A. (2008). http://doi.org/10.1134/S0036024408130207.
Pan, W., Zhang, D., Zhan, J.: (2011) Theoretical investigation on the inclusion of TCDD with β-cyclodextrin by performing QM calculations and MD simulations. J Hazard Mater. http://doi.org/10.1016/j.jhazmat.2011.07.010.
Ramírez, M.; Migliore, B.; Guío, J.; (2011). Avances en la síntesis de los sistemas 1-,2- y 3-benzazepinas y su aplicación en el diseño de nuevos compuestos con actividad farmacológica en el Sistema Nervioso Central, Revista de la Universidad del Zulia, 2 (3), 7-33
Samiei Soofiand, N., Monajjemi, M.: (2016) A study of Fe3O4@ Si18O27 catalyst through Statistical-Nucleus Independent Chemical Shifts (S-NICS) method. Orien J Chem. (2016). http://doi.org/10.13005/ojc/320504
Schleyer, P.V.R., Jiao, H., van Eikema Hommes, N.J.R., Malkin, V.G., Malkina, O.L.: (1997). An Evaluation of the Aromaticity of Inorganic Rings: Refined Evidence from Magnetic Properties. J. Am. Chem. Soc. http://doi.org/10.1021/ja9719135.
Schleyer, P.V.R., Maerker, C., Dransfeld, A., Jiao, H., van Eikema Hommes, N.J.R. (1996) Nucleus-Independent Chemical Shifts: A Simple and Efficient Aromaticity. Probe. J. Am. Chem. Soc. http://doi.org/10.1021/ja960582d.
Stepien, B.T., Krygowski, T.M., Cyranski, M.K., Mlochowski, J., Orioli, P., Abbate, F. (2004). How far is the π‐electron delocalization of the phenanthrene moiety modified in the aza‐analogues and their N‐oxides. ARKIVOC. (2004). http://doi.org/10.3998/ark.5550190.0005.316.
Yahyaei, H., Monajjemi, M.: (2014) Theoretical study of different solvent and temperature effects on double-walled carbon nanotubes (DWNTs) and calixarene with amino acid: A QM/MM study. Fullerenes, Nanotubes and Carbon Nanostructures. http://doi.org/10.1080/1536383X.2012.684190.
Copyright
La Revista de la Universidad del Zulia declara que reconoce los derechos de los autores de los trabajos originales que en ella se publican; dichos trabajos son propiedad intelectual de sus autores. Los autores preservan sus derechos de autoría y comparten sin propósitos comerciales, según la licencia adoptada por la revista..
Esta obra está bajo la licencia:
Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)