Recubrimientos comestibles a base de almidón de yuca, ácido salicílico y aceites esenciales para la conservación de mango cortado

  • Marlon Castro Universidad Laica Eloy Alfaro de Manabí
  • Christian Rivadeneira Universidad Laica Eloy Alfaro de Manabí
  • Stalin Santacruz Universidad Laica Eloy Alfaro de Manabí
Palabras clave: quitosano, almidón de yuca, ácido salicílico, aceites esenciales, mango.

Resumen

El mango presenta un corto tiempo de vida luego de la cosecha. El uso de recubrimientos comestibles en la elaboración de mango mínimamente procesado es una alternativa para su comercialización. En este estudio se aplicó películas de quitosano, almidón de yuca–ácido salicílico o almidón de yuca–cinamaldehído–timol a mango Tommy Atkins cortado con posterior almacenamiento a 8°C y 90% de humedad relativa. Se analizó la pérdida de peso, sólidos solubles, acidez titulable, textura instrumental, color y análisis microbiológico del mango. Los resultados mostraron que la mayor y menor acidez titulable se obtuvo para las frutas recubiertas con quitosano y almidón-ácido salicílico, respectivamente. En cuanto a textura instrumental la fruta recubierta con quitosano tuvo una mayor fuerza de penetración que la fruta tratada con almidón y el control. A nivel microbiológico todas las películas inhibieron el desarrollo de hongos y levaduras mientras el control presentó un incremento durante el almacenamiento.

Descargas

La descarga de datos todavía no está disponible.

Biografía del autor/a

Marlon Castro, Universidad Laica Eloy Alfaro de Manabí
Profesor de la Universidad  Laica Eloy Alfaro de Manabí
Christian Rivadeneira, Universidad Laica Eloy Alfaro de Manabí
Profesor de la Universidad  Laica Eloy Alfaro de Manabí
Stalin Santacruz, Universidad Laica Eloy Alfaro de Manabí
Profesor de la Universidad  Laica Eloy Alfaro de Manabí

Citas

AOAC. (1984). Official methods of analysis of the Association of Official Analytical Chemists. 14th ed. Washington DC, USA, Association of Official Analytical Chemists.

AOAC. (1990). Official methods of analysis of the Association of Official Analytical Chemists. 15th ed. Washington DC: Association of Official Analytical Chemists.

Asghari, M., Hajitagilo, R., Shirzad, H. (2007). Postharvest treatment of salicylic acid effectively controls pear fruit diseases and disorders during cold storage. COST action 924. In Proceedings of the international congress on Novel Approaches for the Control of postharvest diseases and disorders. 355-360.

Asghari, M., Hajitagilo, R., Jalilimarandi, R. (2009). Postharvest application of salicylic acid before coating with chitosan affects the pattern of quality changes in table grape during cold storage. In 6th International Postharvest Symposium. Antalya, Turkey.

Babalar, M., Asghari, M., Talaei, A., Khosroshahi, A. (2007). Effect of pre- and postharvest salicylic acid treatment on ethylene production, fungal decay and overall quality of Selva strawberry fruit. Food Chem., 105, 449-453.

Badawy, M., Rabea, E. (2009). Potential of the biopolymer chitosan with different molecular weights to control postharvest gray mold of tomato fruit. Postharvest Biology and Technol., 51, 110-117.

Bautista, S., Hernández, M., Bósquez, E., Wilson, C. (2003). Effects of chitosan and plant extracts on growth of C. gloeosporioides, anthracnose levels and quality of papaya fruit. Crop Protection., 22, 1087-1092.

Bautista, S., Hernández, M., Bósquez, E. (2004). Growth inhibition of selected fungi by chitosan and plant extracts. Mexican J of Phytopathol., 22, 178-186.

Begin, A., Van Calsteren, M. (1999). Antimicrobial films produced from chitosan. Int J of Biological Macromol., 26, 63-67.

Bezerra, A., Fitzgerald, A., Lins L. (2015). Impact of edible chitosan–cassava starch coatings enriched with Lippia gracilis Schauer genotype mixtures on the shelf life of guavas (Psidium guajava L.) during storage at room temperature. Food Chem., 171, 108–116.

Bueno, S., Boas, J., Elisabeth, E., Pinheiro T. (2005). Da qualidade do abacaxi “pérola” minimamente processado armazenado sob atmosfera modificada. Ciência e Agrotecnologia, 29, 353–361.

Camele, I., Altieri, L., Mancini, E., Rana, G. (2012). In vitro control of post-harvest fruit rot fungi by some plant essential oil components. Int J of Molecular Sci., 13, 2290–2300.

Castro, M., Santacruz, S., Ziani, K. (2014). Aplicación de recubrimientos comestibles a base de quitosano y áloe vera sobre papaya (Carica papaya L. cv. “Maradol”) cortada. Alimentos, Ciencia e Ingeniería, 22, 05-12.

Clavero, Tyrone (2012). Potencialidades y limitaciones de los sistemas agroforestales en la producción animal en Venezuela. Revista de la Universidad del Zulia, 5, 9-20.

Chiumarelli, M., Ferrari, C., Sarantópoulos, C., Hubinger, M. (2011). Fresh Cut Mango Pre-treated with Citric Acid and Coated with Cassava Starch or Sodium Alginate. Innovative Food Sci & Emerging Technologies, 12, 381–387.

Cissé, M. (2015). Preservation of mango quality by using functional chotosan-lactoperoxidase systems coatings. Postharvest Biology and Technol., 10 - 14.

Dash, M., Chiellini, F., Ottenbrite, R., Chiellini, E. (2011). Chitosan: A versatile semi-synthetic polymer in biomedical applications. Progress in Polymer Sci., 36, 981- 1014.

Dávila, J. (1998). Manual poscosecha de mango. Quito, Proyecto BID-Fundacyt- EPN-090.

Devlieghere, F., Vermeulen, A., Debevere, J. (2004). Chitosan: antimicrobial activity, interactions with food components and applicability as a coating on fruit and vegetables. Food Microbiol., 21, 703-714.

Dussán, S., Torres, C., Hleap, J. (2014). Effect of Edible Coating and Different Packaging during Cold Storage of Fresh-cut Mango. Información Tecnológica, 25, 123-130.

Dutta, P., Tripathi, S., Mehrotra, G., Dutta, J. (2009). Perspectives for chitosan based antimicrobial films in food applications. Food Chem., 114, 1173-1182.

Flores, S., Famá, L., Rojas, A., Goyanes, S., Gerschenson, L. (2007). Physical properties of tapioca-starch edible films: influence of filmmaking and potassium sorbate. Food Res Int., 40, 257-265.

Fontes, L., Sarmento, S., Spoto M., Dias, C. (2008). Preservation of minimally processed apple using edible coatings. Ciência e Tecnologia de Alimentos, 28, 872−880.

Hernández, A., Hernández, M., Velázquez, M., Guerra, M., Melo, G. (2007). Actividad antifúngica del quitosano en el control de R. stolonifer y Mucor spp. Revista Mexicana de Fitopatología, 25, 109-113.

Hernández, A., Bautista, S., Velázquez, M., Méndez, M., Sánchez, M., Bello, L. (2008). Antifungal effects of chitosan with different molecular weights on in vitro development of R. stolonifer. Carbohydrate Polymers, 73, 541-547.

Hernández, P., Burbano, A., Mosquera, S., Villada, H., Navia, D. (2011). Efecto del recubrimiento a base de almidón de yuca modificado sobre la maduración del tomate. Revista Lasallista de Investigación, 8, 96-103.

Kader, A. (2002). Post-harvest technology of horticultural crops. Oakland, University of California.

Kampeerapappun, P., Aht-Ong, D., Pentrakoon, D., Srikulkit, K. (2007). Preparation of cassava starch/montmorillonite composite film. Carbohydrate Polymers, 67, 155-163.

Leceta, I., Guerrero, P., Ibarburu, I., Dueñas M., Caba, K. (2013). Characterization and antimicrobial analysis of chitosan-based films. J of Food Eng., 116, 889-899.

Lee, J., Park, H., Choi, W. (2003). Extending shelf-life of minimally processed apples with edible coatings and antibrowning agents. LWT Food Sci and Technol., 36, 323−329.

Liu, J., Tian, S., Meng, X., Xu, Y. (2007). Effects of chitosan on control of postharvest diseases and physiological responses of tomato fruit. Postharvest Biology and Technol., 44, 300-306.

López, P., Sánchez, C., Batlle, R., Nerin, C. (2007a). Vapor-phase activities of cinnamon, thyme, and oregano essential oils and key constituents against foodborne microorganisms. J. Agric. Food Chem., 55, 4348–4356.

López, P., Sánchez, C., Batlle, R., Nerin, C. (2007b). Development of flexible antimicrobial films using essential oils as active agents. J. Agric. Food Chem., 55, 8814–8824.

Norma Oficial Mexicana NOM-111-SSA1-1994, bienes y servicios. (1994). Método para la cuenta de mohos y levaduras en alimentos. En línea www.salud.gob.mx/ unidades/cdi/nom/111ssa14.html. 15.01.2015

Palacín, J. (2012). Efectos de recubrimientos de almidón de yuca, ácido ascórbico, N-acetil-cisteína en la calidad del plátano. Tesis. Cartagena, Universidad Nacional de Colombia.

Perdones, A., Sánchez, L., Chiralt, A., Vargas, M. (2012). Effect of chitosan–lemon essential oil coatings on storage of strawberry. Postharvest Biol and Technol., 70, 32–41.

Plotto, A., Roberts, D., Roberts, R. (2003). Evaluation of plant essential oils as natural postharvest disease control of tomato. Acta Hort., 628, 737-745.

Rathore, H., Masud, T., Soomro, A. (2007). Effect of storage on physico-chemical composition and sensory properties of mango. Pakistan J of Nutrition, 6, 143- 148.

Robles, R., Rojas, M., Odriozola, I., Gonzales, G., Martin O. (2013) Influence of alginate-based edible coating as carrier of antibrowning agents on bioactive compounds and antioxidant activity in fresh-cut Kent mangoes. Food Sci and Technol., 50, 240-246.

Saavedra, N., Algecira, N. (2010). Evaluación de películas comestibles de almidón de yuca y proteína de soya en la conservación de fresas. Revista Nova, 8, 171-182.

Santacruz, S., Rivadeneira, C., Castro, M. (2015). Edible films based on starch and chitosan. Effect of starch source and concentration, plasticizer, surfactant’s hydrophobic tail and mechanic al treatment. Food Hydrocolloids, 49, 89-94.

Santos, N., Alves, A., Aguiar, A., Oliveira, C., Sales, C., Silva, S. (2012). Efficacy of the application of a coating composed of chitosan and Origanum vulgare L. essential oil to control R. stolonifer and A. niger in grapes. Food Microbiol., 32, 345–353.

Singh, Z., Singh, R., Sane, V., Nath P. (2013). Mango - Postharvest Biology and Biotechnology. Critical Rev. Plant Sci., 32, 217–236.

Sothornvit, R., Krochta, J. (2001). Plasticizer effect on mechanical properties of b-lactoglobulin films. J. Food Eng., 50, 149-155.

Souza, A., Benze, R., Ferrão, E., Ditchfield, C., Coelho, A., Tadini, C. (2012). Cassava starch films: Influence of glycerol and clay nanopaticle content on tensile and barrier properties and glass transition temperature. LWT - Food Sci and Technol., 46, 110-117.

Srivastava, M., Dwivedi, U. (2000). Delayed ripening of banana fruit by salicylic acid. Plant Sci., 158, 87 - 96.

Sung, S., Sina, L., Tee, T., Bee, S., Rahmat, A., Rahman, W. (2013). Antimicrobial agents for food packaging applications. Trends in Food Sci & Technology, 33, 110–123.

Tovar, B., García, H., Mata, M. (2001). Physiology of Pre-cut Mango II. Evolution of Organic Acids. Food Res Int., 34, 705–714.

Trujillo, Y., Pérez, J., Durán, D. (2012). Empleo de recubrimientos comestibles con base en almidón de papa y yuca en la conservación del mango. Revista Alimentech, 10, 5-17.

Tunc, S., Chollet, E., Chalier, P., Gontard, N. (2007). Combined effect of volatile antimicrobial agents on the growth of P. notatum. Int. J. Food Microbiol., 113, 263–270.

Zheng, L., Zhu, J.-F. (2003). Study on antimicrobial activity of chitosan with different molecular weights. Carbohydrate Polymers, 54, 527-530.

Zhu, X., Qiuming, W., Jiankang, C., Weibo, J. (2008). Effects of chitosan coating on postharvest quality of mango. J. of Food Processing and Preservation, 32, 770- 784.

Publicado
2020-02-08
Cómo citar
Castro, M., Rivadeneira, C., & Santacruz, S. (2020). Recubrimientos comestibles a base de almidón de yuca, ácido salicílico y aceites esenciales para la conservación de mango cortado. Revista De La Universidad Del Zulia, 7(18), 55-68. Recuperado a partir de https://produccioncientificaluz.org/index.php/rluz/article/view/30926