Optimal linear control based on genetic algorithms for flow regulation in a pilot test bank

  • Gustavo Colmenarez Universidad Privada Dr. Rafael Belloso Chacín; 2Universidad del Zulia
  • Kenneth Rosillon Universidad Privada Dr. Rafael Belloso Chacín; 2Universidad del Zulia
Keywords: Genetic Algorithms, Test Bench, Linear Optimal Control, Flow, Multi-objective Optimization

Abstract

The main objective of this research was to propose a linear optimal controller based on genetic algorithms for flow regulation in a pilot test bench for pneumatic valves of the instrumentation and control laboratory of the School of Mechanical Engineering at the University of Zulia. It was theoretically supported by (Ogata K., 1996), (Ogata K., 2010), (Aström & Hägglund, 2009), (Ljung, 1998), (Holland, 1992), (Mitchell, 1996), (Goldberg , 1989), for the study variable: Linear Optimal Controller based on Genetic Algorithms. The methodology used in the research was descriptive, non-experimental design. The research consisted of four phases. Initially the Description of the operation of the pilot test bench, followed by Mathematical modeling of the flow process in the pilot test bench, then the Design of a linear optimal controller based on genetic algorithms and finally Validation through simulations of the behavior of the linear optimal control based on genetic algorithms. The results were obtained regarding the identification of systems and determination of the mathematical model, that the system adjusted in its dynamics to the BJ11220 structure, being a second order system yielding approximately 82.77% adjustment. Likewise, the structure of the simple genetic algorithm was adapted to tune the calculation parameters of the linear optimal control, resulting in the system converging to an optimal solution in a limited time. Finally, these results were compared with several control architectures designed for the test bench where satisfactory results were obtained by showing a faster response and with less error in all cases.

 

Downloads

Download data is not yet available.

References

Anderson, B., & Moore, J. (1989). Optimal Control. Linear Quadratic Methods (1era ed.). Englewood Cliffs: Prentice Hall International.

Aström, K., & Hägglund, T. (2009). Control PID avanzado (1era ed.). Madrid, España: Pearson Educación.

Balestrini, M. (2002). Como se elabora el proyecto de investigación (6ta ed.). Caracas: BL Consultores Asociados.

Çengel, Y., & Cimbala, J. (2006). Fluids Mechanics. Fundamentals and applications (1era ed.). New York, USA: McGraw-Hill.
Chen, D., Zheng, S., & Wang, H. (2012). Genetic algorithm based LQR vibration wireless control of laminated plate using photostrictive actuators. Earthquake engineering and engineering vibration, 11(1), 83-90. doi:10.1007/s11803-012-0100-x

Creus, A. (1997). Instrumentación industrial (6ta ed.). Barcelona, España: Marcombo.

Dchich, K., Zaafouri, A., & Chaari, A. (2015). On Riccati-Genetic Algorithms Approach for Non-convex Problem Resolution. Case of Uncertain Linear System Quadratic Stabilization. Recent Advances on Electroscience and Computers, 148-153.

Friedland, B. (1986). Control system desing: an introduction to state-space methods (1era ed.). New York: McGraw-Hill.

Ghoreishi, S., & Nekoui, M. (2012). Optimal Weighting Matrices Design for LQR Controller Based on Genetic Algorithm and PSO. Advanced Materials Research, 433-440, 7546-7553. doi:10.4028/www.scientific.net/AMR.433-440.7546

Goldberg, D. (1989). Genetic Algorithms in Search, Optimization and Machine Learning (1era ed.). Boston: Addison-Wesley.

Gómez, M. (2006). Introducción a la metodología de la investigación científica (1era ed.). Córdoba: Editorial Brujas.

Gurevich, V. (2006). Electric Relays. Principles and applications. Boca Raton, Florida: CRC Press.

Hernández, R., Fernández, C., & Baptista, M. (2010). Metodología de la investigación (5ta ed.). México: Mc Graw Hill.

Holland, J. (1992). Adaptation in Natural and Artificial Systems (2da ed.). MIT Press.

Kukreti, S., Walker, A., Putman, P., & Cohen, K. (2015). Genetic Algorithm Based LQR for Attitude Control of a Magnetically Actuated CubeSat. Foro AIAA SciTech. Kissimmee, Florida: Instituto Americano de Aeronáutica y Astronáutica. doi:10.2514/6.2015-0886

Ljung, L. (1998). System Identification: Theory for the User (2da ed.). Prentice Hall.
Mitchell, M. (1996). An introduction to genetic algorithms. Cambridge: The MIT Press.
Nagarkar, M., & Vikhe, G. (Abril de 2016). Optimization of the linear quadratic regulator (LQR) control quarter car suspension system using genetic algorithm. Ingeniería e Investigación, 36(1), 23-30. doi:http://dx.doi.org/10.15446/ing.investig.v36n1.49253

Ogata, K. (1996). Sistemas de control en tiempo discreto (2da ed.). México: Prentice Hall.

Ogata, K. (2010). Ingeniería de control moderna (5ta ed.). Madrid, España: Pearson Educación.

Pallela, S., & Martins, F. (2012). Metodología de la Investigación Cuantitativa. Caracas: FEDUPEL.

Rosillon, K. (2014). Controlador PID Dual Loop adaptativo de la variable flujo en un banco de pruebas para válvulas neumáticas. Maracaibo: Universidad Privada Dr. Rafael Belloso Chacín.

Sabino, C. (2007). El Proceso de Investigación. Caracas: Editorial Panapo.

Söderström, T., & Stoica, P. (1989). System Identification (1era ed.). Prentice Hall.

Soto. (2012). Automatización e implementación de un sistema de prueba para válvulas neumaticas bajo ambiente labview. Maracaibo: Universidad del Zulia.

Zubicaray, M. (2000). Bombas. Teoría, diseño y aplicaciones (2da ed.). México: Editorial Limusa.
Published
2024-08-05
How to Cite
Colmenarez, G., & Rosillon, K. (2024). Optimal linear control based on genetic algorithms for flow regulation in a pilot test bank. REDIELUZ, 14(1), 100 - 111. https://doi.org/10.5281/zenodo.13174986