Estimating Fuzzy hazard Rate Function of Generalized Exponential Distribution
Resumen
the paper deals with estimating two parameters (β,α) of generalized exponential failure model, then comparing fuzzy hazard rate function model, the methods of estimation are, moments, maximum likelihood, and proposed one, depend on frequency ratio method were it is derived according to studied dis- tribution, then used for estimation parameters (β,α).Citas
Afify (2010), “On estimation of the exponentiated Pareto distribution under different sample schemes” Applied Mathematical sciences, Vol.4 No.8, pp.393 – 402.
Abaas, N.S. and Ranna H. (2016), “Preliminary test shrinksge estima- tors for the shape parameter of generalized exponential distribution”, In- ternational Journal of Applied mathematical Research, Vol.5, No.4, pp.162 – 166.
Abbas N. S. and Maymona A.A. (2015), “estimate the shape parame- ter of generalized Rayleigh distribution using Bayesian – Shrinksge tech- nique”, International Journal of innovative science engineering & technol- ogy, Vol.2, Issue 6.
Gupta R. D. and Kunda, D. (2000), “Generalized exponential distribu- tion: different method of estimations”, J. Stat. Comput. Vol.00, pp.1 – 22. [5]Gupta R. D. and Kunda, D. (2007), “generalized exponential distribu- tion existing results and some recent developments”, Journal of statistical planning and inference, Vol.127, pp. 213 – 227.
Hassan A. (2013), “maximum Likelihood and bayes estimators of the unknown parameters for exponentiated exponential distribution using ranked set sampling” International Journal of Engineering research and Applications, Vol.3, Issue 1, pp.720 – 725.
Huda A. R., Zainab N.K., (2017), “Some Bayes estimators for Maxwell distribution by using new loss function”, Al – Mustansryah Journal of Sci- ence, Vol.28, No.1.
Karam N.S. (2016), “one two and multi – component Gompertiz stress – strength reliability estimation”, mathematical theory and modeling, Vol.6, No.,3.
Kim J.J. and Kang E.M., (1981), “Estimation of Reliability in a multi- component stress – strength model in Weibull case:, Journal of the KSQC, Vol.9, No.1, pp. (3 – 11).
M. A. El-Damcese1, Dina. A. Ramadan, (2015), “Analyzing System Reliability Using Fuzzy Mixture Generalized Linear Failure Rate Distri- bution”, American Journal of Mathematics and Statistics 2015, 5(2): 43-51. [11]Nathier A. Ibrahim1, Hussein A. Mohammed, (2017), “Parameters and Reliability Estimation for the Fuzzy Exponential Distribution”, Ameri- can Journal of Mathematics and Statistics 2017, 7(4): 143-151.
Pandy M., Uddin Md B. (1991), “Estimation of Reliability in Multi- component stress – strength model following a burr distribution”, Microe- lectronics Reliability, Vol. 31, Issue 1, pp. 21 – 25.
Rao, Gadde Srinivasa (2014), “”Estimation of Reliability in Multicom- ponent stress – strength based on generalized Rayleigh distribution”, J. of Modern Applied statistical methods, Vol.13, No.24.
Saleemah H. Jasaim, (2016), “Fuzzy Estimators for Hazard Rate Func- tion Under Mixed Quasi – Lindely”, International Journal of Science and Research (IJSR) ISSN (Online): 2319-7064