Efecto de las estilolitas en la resistencia mecánica de las calizas, en la compactación y permeabilidad de yacimientos carbonatados naturalmente fracturados

  • Ninfa Castillo Universidad del Zulia
Palabras clave: calizas, estilolitas, permeabilidad, yacimientos naturalmente fracturados

Resumen

Los yacimientos naturalmente fracturados en rocas calizas presentan estilolitas que, junto con diaclasas, impactan la calidad del yacimiento debido a su efecto sobre la porosidad y la red de fracturas. Las estilolitas, a menudo acompañadas de cementos reprecipitados, pueden actuar como barreras que limitan el flujo de fluidos, reduciendo la permeabilidad efectiva del sistema poroso. En este estudio se analiza
el efecto de las estilolitas en la resistencia mecánica, compactación y permeabilidad de los yacimientos carbonatados naturalmente fracturados. Para ello, se emplea una clasificación detallada de las morfologías de las estilolitas y su asociación con la compactación y la permeabilidad. Asimismo, se evalúan métodos específicos para estimar la resistencia de las estilolitas y su contribución a la calidad del yacimiento. Este análisis proporciona información crítica sobre la influencia de las estilolitas en la
eficiencia de producción en calizas fracturadas.

Descargas

La descarga de datos todavía no está disponible.

Biografía del autor/a

Ninfa Castillo, Universidad del Zulia
Docente - Jefe Laboratorio de Geologia (Escuela de Petroleo-Dpto Yacimientos)

Citas

Aguilera, R. (1993). Advances in the Study of Naturally Fractured Reservoir. JCPT, p. 5.

Aharonov, E., Katsman, R. (2009). Interaction between pressure solution and clays in stylolite development: insights from modeling. Am. J. Sci. 309 (7), 607–632.

Alsharhan, A., Sadd, J.L. (2000). Stylolites in Lower Cretaceous Carbonate Reservoirs. v. 69. Society for Sedimentary Geology Special Publication, U.A.E, pp. 185–207.

André, G. (2003). Characterization of Meso-Cenozoic Deformations and Fluid Circulations in the Eastern Paris Basin. Thesis. Univ. Henri Poincaré, Nancy, France.

Bathurst R.G.C. (1971). Carbonate sediments and their diagenesis. Amsterdam/London/New York: Elsevier.

Brantut, N., Heap, M.J., Baud, P., Meredith, P.G. (2014). Mechanisms of timedependent deformation in porous limestone. J. Geophysics. Res. 119(7), 5444-5463.

Carozzi, A.V., Vonbergen, D. (1987). Stylolitic porosity in carbonates - a critical factor for deep hydrocarbon production. J. Pet. Geol. 10 (3), 267–282.

Cilona, A., Baud, P., Tondi, E., Agosta, F., Vinciguerra, S., Rustichelli, A., Spiers, C.J. (2012). Deformation bands in porous carbonate grainstones: field and laboratory observations. J. Struct. Geol. 45, 137-157.

Dawson, W.C. (1988). Stylolite Porosity in Carbonate Reservoirs: American Association of Petroleum Geologists Search and Discovery Article, American Association of Petroleum Geologists Annual Convention, Houston, Texas, 20–23
March 1988 (Article #91030).

Donath, F.A. (1964). Strength variation and deformational behavior in anisotropic rock, in State of Stress in the Earth’s Crust. edited by W. R Judd, pp. 281-297, New York: American Elsevier.

Dunnington, H.V. (1954). Stylolite development post-dates rock induration. J. Sediment Petrol. 24 (1), 27–49.

Dunnington, H.V. (1967). Aspects of Diagenesis and Shape Change in Stylolitic Limestone Reservoirs: 7th World Petroleum Congress, 2–9 April 1967, Mexico City, Mexico. 2 pp. 339–352 12129.

Ebner, M., Piazolo, S., Renard, F., Koehn, D. (2010). Stylolite interfaces and surrounding matrix material: Nature and role of heterogeneities in roughness and microstructural development. J. Struct. Geol. 32(8), 1070-1084.

Finkel, E.A., Wilkinson, B.H. (1990). Stylolitization as source of cement in Mississippian Salem Limestone, West-Central Indiana. AAPG Bull. -Am. Assoc. Pet. Geol. 74 (2), 174–186.

Gatelier, N., Pellet, F., Loret, B. (2002). Mechanical damage of an anisotropic porous rock in cyclic triaxial tests. Int. J. Rock Mech. Min. Sci. 39, 335-354.

Heap, M.J., Baud, P., Reuschlé, T., Meredith, P.G. (2014a). Stylolites in limestones: barriers to fluid flow? Geology 42 (1), 51–54.

Koehn, D., Renard, F., Toussaint, R., Passchier, C.W. (2007). Growth of stylolite teeth patterns depending on normal stress and finite compaction. Earth Planet. Sci. Lett. 257 (3–4), 582–595.

Koehn, D., Ebner, M., Renard, F., Toussaint, R., Passchier, C.W. (2012). Modelling of stylolite geometries and stress scaling. Earth Planet. Sci. Lett. 341, 104–113.

Koepnick, R.B. (1987). Distribution and permeability of stylolite-bearing horizons within a Lower Cretaceous carbonate reservoir in the Middle East. Soc. Pet. Eng. Form. Eval.: 2 http://dx.doi.org/10.2118/14173-PA.

Larbi, J.A. (2003). Effect of stylolites on the durability of building stones: two cases studies. HERON, 48 (3).

Lind, I., Nykjaer, O., Priisholm, S., Springer, N. (1994). Permeability of stylolitebearing chalk. J. Pet. Technol. 46:986–993. http://dx.doi.org/10.2118/26019-PA.

Merino, E. (1992). Self-organization in stylolites. Am. Sci. 80, 466.

Nelson, R.A. (1981). Significance of fracture sets associated with stylolite zones. Am. Assoc. Pet. Geol. Bull. 65, 2417–2425.

Park,W.C., Schot, E.H. (1968). Stylolites: their nature and origin. J. Sediment. Petrol. 38 (1), 175–191.

Pollard, D.D., Aydin, A.A. (1988). Progress in understanding jointing over the past century: Geological Society of America Bulletin 100, 1181-1204.

Rolland, A., Toussaint, R., Baud, P., Conil, N., Landrein, P. (2014). Morphological analysis of Sedimentary stylolites for paleostress estimation in limestones surrounding. The Andra Underground Research Laboratory site. Int. J. Rock
Mech. Min. Sci. 67, 212-225.

Rustichelli, A., Tondi, E., Korneva, I., Baud, P., Vinciguerra, S., Agosta, F., Reuschlé, T., Janiseck, J.M. (2015). Bedding parallel stylolites in shallow-water limestone successions of the Apulian Carbonate Platform (central-southern Italy).
Italian J. Geosc. 134 (3), 513-534.

Railsback, L.B. (1993). Lithologic controls on morphology of pressure-dissolution surfaces (stylolites and dissolution seams) in Paleozoic carbonate rocks from the mid-eastern United-States. J. Sediment. Res. 63 (3), 513–522.

Raynaud, S., Carrio-Schaffhauser, E. (1992). Rock matrix structures in a zone influenced by a stylolite. J. Struct. Geol. 14 (8–9), 973–980.

Renard, F., Schmittbuhl, J., Gratier, J.-P., Meakin, P., Merino, E. (2004). Three dimensional roughness of stylolites in limestones. J. Geophysics. Res. Solid Earth 109. http://dx.doi. org/10.1029/2003JB002555.

Rispoli, R. (1981). Stress-fields about strike-slip faults inferred from stylolites and tension gashes. Tectonophysics 75, 29–36.

Rolland, A., Toussaint, R., Baud, P., Schmittbuhl, J., Conil, N., Koehn, D., Renard, F., Gratier, J.P. (2012). Modeling the growth of stylolites in sedimentary rocks. J. Geophysics. Res. Solid Earth 117 (6), B06403.

Schmittbuhl, J., Renard, F., Gratier, J.P., Toussaint, R. (2004). Roughness of stylolites: Implications of 3D high resolution topography measurements. Phys. Rev. Lett. 93 (23), 238501, doi:10.1103/PhysRevLett.93.238501.

Stearns, D. W, and Friedman, M. (1972). Reservoirs in Fractured rock in stratigraphic oil and gas fields classification, exploration methods and case histories. Am. Assoc. Petrol. Geologist. Men 16, p 82-106

Stockdale, P.B. (1943). Stylolites: primary or secondary? J. Sediment. Petrol. 13, 3–12.

Tang, C. (1997). Numerical simulation of progressive rock. failure and associated seismicity, Int. J. Rock Mech. Min. Sci. 34, 249-261.

Vajdova, V., Zhu, W., Chen T.-M.N., Wong, T.-f. (2010). Micromechanics of brittle faulting and cataclástico flow in Tavel limestone. J. Struct. Geol. 32, 1158-1169.

Vásquez H., Andrés R. (2001). Introducción a la geomecánica petrolera. Quinta edición. V.V.A. Consultores, C.A. Caracas, Venezuela

Wong, T.-f., Wong, R.H.C., Chau, K.T., Tang, C.A (2006). Microcrack statistics, Weibull distribution and micromechanical modeling of compressive failure in rock. Mech. Mat. 38, 664-681.

Xu, T., Tang, C.-a., Zhao, J., Li, L., Heap, M.J. (2012). Modelling the timedependent rheological behavior of heterogeneous rocks. Geophysics. J. Int. 189, 1781-1796.

Young, R.B. (1945). Stylolites Solution in Witwatersrand quartzites. Geol. Soc. S. Afr. Trans.47, 137–142.

Zhou, X., Aydin, A., (2010). Mechanics of pressure solution seam growth and evolution. J. Geophysics. Res.-Solid Earth 115, 18.
Publicado
2025-01-09
Cómo citar
Castillo, N. (2025). Efecto de las estilolitas en la resistencia mecánica de las calizas, en la compactación y permeabilidad de yacimientos carbonatados naturalmente fracturados. Impacto Científico, 19(2), 402-411. Recuperado a partir de https://produccioncientificaluz.org/index.php/impacto/article/view/43252