Lema de Poincaré para un álgebra de Heisenberg semitrenzada.

  • Fernando Mejías Universidad de Los Andes, Núcleo Universitario “Rafael Rangel”, Trujillo.
Palabras clave: Formas diferenciales no conmutativas, álgebra semitrenzada, lema de Poincaré

Resumen

Un álgebra semitrenzada es un álgebra $A$ sobre un anillo conmutativo $\L$ con unidad, equipada con un operador $R\in\End(A\otimes A)$ que satisface la ecuación de Yang-Baxter, $R(1\otimes a)=a\otimes1$ y $R(a\otimes1)=1\otimes a$. El cálculo diferencial semitrenzado $\Omega_{R}(A)$ se obtiene del cálculo diferencial universal módulo las relaciones $a\,db=\sum_i(db^i)a_i$, donde $R(a\otimes b)= \sum_ia_i\otimes b_i$. Demostramos una versión del Lema de Poincaré para el álgebra semitrenzada de Heisenberg sobre $\mathbb{R}[x]$.

Citas

Baez, N. R-commutative geometry and quantization of Poisson algebras. Adv. Math. 95 (1992), 61-91.

Baez, N. Differential calculi on quantum vector spaces with Hecke-type relations. Lett. Math. Phys. 23 (1991), 133-141.

Bergman, G. The diammond lemma for ring theory. Adv. in Math. 29 (1978), 178-218.

Cenkl, B. Noncommutative geometry. Course Notes, Northeastern University, Boston, 1998.

Cenkl, B. and Porter, R. Differential forms and torsion in the fundamental group. Adv. in Math. 48(2) (1983), 189-204.

Connes, A. Noncommutative differential geometry. Publ. Math. IHES, 62 (1985), 257-360.

Connes, A. Noncommutative geometry. Academic Press, San Diego, CA, 1994.

Gracía-Bondía, J.M., Várilly, J.C. and Figueroa, H. Elements of noncommutative geometry. Birkhäuser, Boston, 2001.

Karoubi, M. Algebres tressees et q-cohomologie. (preprint).

Karoubi, M. Formes différentielles non commutatives et cohomologie a coefficients arbitraires. Trans. Amer. Math. Soc., 374 (1995), 4277-4299.

Kassel, C. Quantum groups. Springer-Verlag, Nueva York, 1995.

MacLane, S. Homology. Springer-Verlag,Nueva York, 1976.

Mejías, L. The de Rham tehorem for the noncommutative complex of Cenkl and Porter. Internat. J. Math. Math. Sci., 30(11) (2002), 667-696.

Munkres, J. Elements of algebraic topology. Addison-Wesley, Reading, Massachusetts, 1984.

Spanier, E. Algebraic topology. Springer-Verlag, Nueva York, 1966.

Spivak, M. A comprehensive introduction to differential geometry (volumen I, tercera edición), Publish or Perish, Houston, 1999.

Publicado
2017-12-28
Cómo citar
Mejías, F. (2017). Lema de Poincaré para un álgebra de Heisenberg semitrenzada. Divulgaciones Matemáticas, 18(2), 18-25. Recuperado a partir de https://produccioncientificaluz.org/index.php/divulgaciones/article/view/31374
Sección
Artículos de Investigación