Coincidences in the Padovan and Tribonacci sequences.

  • Santos Hernández Hernández Unidad Académica de Matemáticas, Universidad Autónoma de Zacatecas, Campus II
Keywords: Padovan, Tribonacci sequences, Linear forms in logarithms, reduction method

Abstract

Let $(P_{n})_{n\geqslant 0}$ be the {\em Padovan sequence} given by $P_{0}=0$, $P_{1}=P_{2}=1$ and the recurrence formula $P_{n+3}=P_{n+1}+P_{n}$ for all $n\geqslant 0$. Let $(T_{n})_{n\geqslant 0}$ be the {\em Tribonacci sequence} given by $T_{0}=0$, $T_{1}=T_{2}=1$ and the recurrence formula $T_{n+3}=T_{n+2}+T_{n+1}+T_{n}$ for all $n\geqslant 0$. In this note we solve the Diophantine equation
$$P_{n}=T_{m}$$
in non-negative integers $n$, $m$. In particular, we find all the elements in the intersection of the Padovan and Tribonacci sequences.

References

A. Baker, H. Davenport. The equations 3x²-2=y² and $8x²-7=z². Quart. J. Math. Oxford 20(2)(1969), 129-137.

M. Bennett, A. Pintér. Intersections of recurrence sequences. Proc. Amer. Math. Society, 143(2015), 2347-2353.

J.J. Bravo, F. Luca. Coincidences in generalized Fibonacci sequences. J. Number Theory, 133(2013), 2121-2137.

J.J. Bravo, C. A. and Gomez, F. Luca. Powers of two as sums of two k-Fibonacci numbers Miskolc Math. Notes, 17(1)(2016), 85-100.

Y. Bugeaud, M. Mignotte and S. Siksek. Classical and modular approaches to exponential diophantine equations I: Fibonacci and Lucas perfect powers. Ann. of Math. 163(2006), 969-1018.

A. Dujella, A. Pethő. A generalization of a theorem of Baker and Davenport. Quart. J. Math. Oxford, 49 (3)(1998), 291-306.

A.C. García Lomelí and S. Hernández Hernández. Powers of two as sums of to Padovan numbers. submitted.

S. Guzmán Sánchez and F. Luca. Linear combinations of factorials and S-units in a binary recurrence sequence. Ann. Math. Québec, 38(2014), 169-188.

D. Marques. On the intersection of two distinct k-generalized Fibonacci sequences. Mat. Bohemica, 137(4)(2012), 403-413.

E. M. Matveev. An explicit lower bound for a homogeneous rational linear form in the logarithms of algebraic numbers II. Izv. Math 64(6)(2000), 217-1269.

M. Mignotte. Intersection des images de certains suites récurrentes linéaires. Theoret. Comput. Science, 7(1978), 117-122.

N. J. A. Sloane. The On-Line Encyclopedia of Integer Sequences. https://oeis.org/

I. Stewart. Mathematical recreations: Tales of a neglected number. Sci. American, 274(1996), 92-93.

B.M.M, de Weger. Padua and Pisa are exponentially far apart. Pub. Matemátiques, 41(1997), 631-651.
Published
2018-12-29
How to Cite
Hernández Hernández, S. (2018). Coincidences in the Padovan and Tribonacci sequences. Divulgaciones Matemáticas, 19(2), 16-22. Retrieved from https://produccioncientificaluz.org/index.php/divulgaciones/article/view/36608