A note on the Banach contraction principle in b-metric spaces

https://doi.org/10.5281/zenodo.5728134

  • Mohamed Akkouchi Faculty of Sciences-Semlalia, University Cadi Ayyad
Keywords: Banach fixed point principle, b-metric space, stopping rules

Abstract

Let $(X,d; s)$ be a complete $b$-metric space with parameter $s\geq 1$. Let $T$ a contractive map on $X$, that is a selfmap $T$ of $X$ satisfying
$$ d(Tx,Ty) \leq \lambda d(x,y), \, \forall x,y \in X, \eqno(B_{\lambda})$$
with some $\lambda \in [0, 1)$. In 1989, Bakhtin established an alogous to the Banach contraction principle in the context of complete $b$-metric spaces. Precisely, he proved that if $\lambda \in [0, \frac{1}{s})$. Then $T$ has a unique fixed point. The aim of this note is to give a simple proof of the Banach contraction principle in $X$ for all $\lambda \in [0, 1)$. So, in particular, we provide some complements to Bakhtin's result. We establish a fundamental contraction inequality for $T$ and use it to prove convergence of Picard sequences. For such sequences, we give an evaluation of the order of convergence and a posteriori error estimate. We estimate the diameter of the $T$-orbits. As applications, we deduce two stopping rules indicating the sufficient number of iterations of the Picard process which allows a satisfactory approximation for the fixed point of $T$.

References

T. V. An and N. V. Dung.; Remarks on Frink's metrization technique and applications, arXiv preprint, arXiv:1507.01724 (2015), 15 p.

I. A. Bakhtin.; The contraction mapping principle in quasimetric spaces, Funktionalnyi Analyz, Ulianovskii Gos. Ped. Inst. 30 (1989), 26--37 (Russian).

V. Berinde. Generalized contractions in quasimetric spaces, Seminar on Fixed Point Theory, 1993, 3-9.

Lj. B. Ćirić. On some maps with non-unique fixed points. Publ. Inst. Math. (Beograd), 13(31) (1974), 52--58.

S. Cobza\c{s}. B-metric spaces, fixed points and Lipschitz functions, arXiv:1802.02722v2 [math.FA], (2018), 35 pp.

S. Czerwik. Contraction mapping in $b$-metric spaces. Acta Math. Inform. Univ. Ostrav., 1(1) (1993), 5--11.

S. Czerwik. Nonlinear set-valued contraction mappings in $b$-metric spaces. Atti Semin. Mat. Fis. Univ. Modena, 46 (1998), 263--276.

E. Karapinar. A Short survey on the recent fixed point results on $b$-metric spaces, Constructive Mathematical Analysis. 1(1), (2018), 15--44.

R. S. Palais. A simple proof of the Banach contraction principle, J. Fixed Point Theory Appl., 2, (2007), 221--223.
Published
2021-07-22
How to Cite
Akkouchi, M. (2021). A note on the Banach contraction principle in b-metric spaces: https://doi.org/10.5281/zenodo.5728134. Divulgaciones Matemáticas, 22(1), 22-30. Retrieved from https://produccioncientificaluz.org/index.php/divulgaciones/article/view/36556