The graph of a base power b, associated to a positive integer number

https://doi.org/10.5281/zenodo.5728168

Keywords: Hamiltonian Cycle, Hamilton-connectivity, Pancyclicity

Abstract

Many concepts of Number Theory were used in Graph Theory and several types of graphs have been introduced. We introduced the graph of a base power $b \in \mathbb{Z}^{+}-\{1\}$, associated to a positive integer number $n \in \mathbb{Z}^{+} $, denoted for $GP_{b}(n)$, with set of vertices $V=\{x\}_{x=1}^{n}$ and with set of edges:

$$ E =\{ \{x, y\} \in 2^{\,V}: \exists r \in \mathbb{Z}^{+}\cup\{ 0 \} \mbox{, such that } | y \,-\, x | = b^{\,r} \} \mbox{,} $$

and we study some of its properties, in special for case $b=2$.

References

Abawajy, J., Kelarev, A. and Chowdhury, M.; Power Graphs: A Survey, Electronic Journal of Graph Theory and Applications, 1(2) (2013), 125-147.

Chv\'{a}tal, V.; On Hamilton's Ideal, Journal of Combinatorial Theory, 12(B) (1972), 163--168.

Diestel, R.; Graph Theory (2th ed.), Springer, New York, 2000.

Leithold, L.; El Cálculo (7th ed.), Oxford University Press, México, 1998.

Lipschutz, S.; Teoría de Conjuntos y Temas Afines, McGraw-Hill/Interamericana de México S. A. de C.V., México, 1994.

Mukherjee, H.; Hamiltonicity of the Power Graph of Abelian Groups, in :\url{https://arxiv.org/pdf/1505.00584}(2017), consulted 05/07/2017, 01:25 a.m.

Munafo, R.; Expressible as $A*B^A$ in a nontrivial way, in: \url{https://oeis.org/A171607} (2009) consulted 20/11/2019, 02:14 a.m.

Sloane, N.; Cullen numbers: $n*2^n + 1$, in :\url{https://oeis.org/A002064} (2012), consulted 20/11/2019, 00:14 a.m.

Sloane, N.; Woodall (or Riesel) numbers: $n*2^n - 1$, in: \url{https://oeis.org/A003261} (2012), consulted 20/11/2019, 01:05 a.m.
Published
2021-07-22
How to Cite
Brito, D., Castro, O., & Marı́nL. (2021). The graph of a base power b, associated to a positive integer number: https://doi.org/10.5281/zenodo.5728168. Divulgaciones Matemáticas, 22(1), 31-39. Retrieved from https://produccioncientificaluz.org/index.php/divulgaciones/article/view/36554