Efecto del naproxeno sobre los biomarcadores de estrés oxidativo en Gammarus pulex

  • Engin Seker Tunceli Munzur University, Pertek Sakine Genç Vocational School Laborant Veterinary Health Department, Pertek, Tunceli, Türkiye
Palabras clave: Gammarus pulex, naproxeno, estrés oxidativo, estado antioxidante

Resumen

Los antiinflamatorios no esteroideos (AINEs) son medicamentos ampliamente prescritos en todo el mundo y pertenecen a una clase terapéutica destacada. De estos fármacos, el naproxeno es un AINE de uso común. Después de la administración, los AINEs como el naproxeno se eliminan del cuerpo ya sea en su forma química original o como metabolitos, y finalmente pasan al medio acuático. El presente estudio buscó demostrar los impactos del naproxeno en el estado oxidante/antioxidante de Gammarus pulex, un invertebrado acuático (anfípodos). Los G. pulex estuvieron expuestos a concentraciones subletales de naproxeno (3,44, 6,87 y 13,75 mg·L-1) durante 96 horas (h). Se recogieron muestras de tejido corporal entero después de 24, 48 y 96 h de exposición y se analizaron para determinar el estado oxidante/antioxidante cuantificando los niveles de malondialdehído (MDA) y glutatión total (GSH), y las actividades de superóxido dismutasa (SOD) y catalasa (CAT) de G. pulex. El nivel de MDA mostró un aumento notable, mientras que el nivel de GSH endógeno mostró una disminución significativa en los tejidos corporales completos analizados de manera dependiente del tiempo después del tratamiento con naproxeno de G. pulex. En G. pulex expuesta a la dosis más alta de naproxeno; Se observaron disminuciones en la actividad de GSH, SOD y CAT. La actividad de SOD no mostró un aumento perceptible en las estadísticas después de 24 y 48 h de exposición, sin embargo, se observó una diferencia después de 96 h en comparación con el grupo de control (P<0,05). Los hallazgos de este estudio demostraron la capacidad del naproxeno para iniciar el estrés oxidativo y elevar los niveles de MDA en G. pulex, incluso en concentraciones notablemente bajas. Este estudio enfatiza que es esencial desarrollar metodologías efectivas para impedir la entrada de naproxeno en el ambiente acuático.

Descargas

La descarga de datos todavía no está disponible.

Citas

Kunz PY, Kienle C, Gerhardt A. Gammarus spp. in aquatic ecotoxicology and water quality assessment: Toward integrated multilevel tests. In: Whitacre DM, editor. Reviews of environmental contamination and toxicology [Internet]. New York (NY): Springer; 2010. p. 1–76. RECT, Vol. 205. doi: https://doi.org/bq47wd

Bundschuh M, Zubrod JP, Klemm P, Elsaesser D, Stang C, Schulz R. Effects of peak exposure scenarios on Gammarus fossarum using field relevant pesticide mixtures. Ecotoxicol. Environ. Saf. [Internet]. 2013; 95:137–143. doi: https://doi.org/f3p449

Besse JP, Coquery M, Lopes C, Chaumot A, Budzinski H, Labadie P, Geffard O. Caged Gammarus fossarum (Crustacea) as a robust tool for the characterization of bioavailable contamination levels in continental waters: Towards the determination of threshold values. Water Res. [Internet]. 2013; 47(2):650–660. doi: https://doi.org/f4kxnn

Tkaczyk A, Bownik A, Dudka J, Kowal K, Ślaska B. Daphnia magna model in the toxicity assessment of pharmaceuticals: A review. Sci. Total Environ. [Internet]. 2021; 763:143038. doi: https://doi.org/gn4gkq

Alther R, Krähenbühl A, Bucher P, Altermatt F. Optimizing laboratory cultures of Gammarus fossarum (Crustacea: Amphipoda) as a study organism in environmental sciences and ecotoxicology. Sci. Total Environ. [Internet]. 2023; 855:158730. doi: https://doi.org/gzwgn8

Sohail R, Mathew M, Patel KK, Reddy SA, Haider Z, Naria M, Habib A, Abdin ZU, Chaudhry RW, Akbar A. Effects of non–steroidal anti–inflammatory drugs (NSAIDs) and gastroprotective NSAIDs on the gastrointestinal tract: A narrative review. Cureus [Internet]. 2023; 15(4):e37080. doi: https://doi.org/ntfz

Zuberi MH, Haroon U, Bibi Y, Mehmood T, Mehmood I. Optimization of quantitative analysis of naproxin sodium using UV spectrophotometery in different solvent mediums. Am. J. Anal. Chem. [Internet]. 2014; 5(3):211–214. doi: https://doi.org/g8rqgm

Soltani N, Tavakkoli N, Mosavimanesh ZS, Davar F. Electrochemical determination of naproxen in the presence of acetaminophen using a carbon paste electrode modified with activated carbon nanoparticles. C. R. Chimie. [Internet]. 2018; 21(1):54–60. doi: https://doi.org/gc9mz6

Day RO, Graham GG. Non–steroidal anti–inflammatory drugs (NSAIDs). Br. J. Sports, Med. [Internet]. 2013; 47:1127. doi: https://doi.org/gcpzpp

Świacka K, Michnowska A, Maculewicz J, Caban M, Smolarz K. Toxic effects of NSAIDs in non–target species: A review from the perspective of the aquatic environment. Environ. Pollut. [Internet]. 2020; 273(4):115891. doi: https://doi.org/gwcjr7

Li Q, Wang P, Chen L, Gao H, Wu L. Acute toxicity and histopathological effects of naproxen in zebrafish (Danio rerio) early life stages. Environ. Sci. Pollut. Res. [Internet]. 2016; 23(18):18832–18841. doi: https://doi.org/f86j43

Kwak K, Ji K, Kho Y, Kim P, Lee J, Ryu J, Choi K. Chronic toxicity and endocrine disruption of naproxen in freshwater water fleas and fish, and steroidogenic alteration using H295R cell assay. Chemosphere [Internet]. 2018; 204:156–162. doi: https://doi.org/gk3vsw

Yamindago A, Lee N, Woo S, Yum S. Transcriptomic profiling of Hydra magnipapillata after exposure to naproxen. Environ. Toxicol. Pharmacol. [Internet]. 2019; 71:103215. doi: https://doi.org/grghzv

Zhao Y, Hu L, Hou Y, Wang Y, Peng Y, Nie X. Toxic effects of environmentally relevant concentrations of naproxen exposure on Daphnia magna including antioxidant system, development and reproduction. Aquat. Toxicol. [Internet]. 2024; 266:106794. doi: https://doi.org/g8rqgn

Madhavan J, Grieser F, Ashokkumar M. Combined advanced oxidation processes for the synergistic degradation of ibuprofen in aqueous environments. J. Hazard. Mater. [Internet]. 2010; 178(1–3):202–208. doi: https://doi.org/b3fbr5

Gómez–Oliván LM. Non–steroidal anti–inflammatory drugs in water: Emerging contaminants and ecological impact [Internet]. Cham (Switzerland): Springer Nature; 2020. 337 p. HEC, Vol. 96. doi: https://doi.org/g8rqgp

Brutzkus JC, Shahrokhi M, Varacallo M. Naproxen [Internet]. Treasure Island (FL, USA): StatPearls Publishing; 2018 [cited 20 Apr. 2024]. PMID: 30247840. Available in: https://goo.su/J1TQF

Parolini M, Binelli A, Provini A. Chronic effects induced by ibuprofen on the freshwater bivalve Dreissena polymorpha. Ecotoxicol. Environ. Saf. [Internet]. 2011; 74(6):1586–1594. doi: https://doi.org/d4hmgk

Brandão FP, Pereira JL, Gonçalves F, Nunes B. The impact of paracetamol on selected biomarkers of the mollusc species Corbicula fluminea. Environ. Toxicol. [Internet]. 2014; 29(1):74–83. doi: https://doi.org/d9npn2

Gómez–Oliván LM, Galar–Martínez M, García–Medina S, Valdés–Alanís A, Islas–Flores H, Neri–Cruz N. Genotoxic response and oxidative stress induced by diclofenac, ibuprofen and naproxen in Daphnia magna. Drug Chem. Toxicol. [Internet]. 2014; 37(4):391–399. doi: https://doi.org/g8rqgq

García–Medina AL, Galar–Martínez M, García–Medina S, Gómez–Oliván LM, Razo–Estrada C. Naproxen–enriched artificial sediment induces oxidative stress and genotoxicity in Hyalella azteca. Water Air Soil Pollut. [Internet]. 2015; 226(195):1–10. doi: https://doi.org/gwbcjr

Serdar O. The effect of dimethoate pesticide on some biochemical biomarkers in Gammarus pulex. Environ. Sci. Pollut. Res. [Internet]. 2019; 26(21):21905–21914. doi: https://doi.org/gwcp4w

Yildirim NC, Ak TP, Samasas O. Toxicological effects of di–(2–ethylhexyl) phthalate in Gammarus pulex: a biochemical and histopathological assessment. Environ. Sci. Pollut. Res. [Internet]. 2021; 28(32):44442–44451. doi: https://doi.org/gv5xst

Hughes JG, Chisholm DR, Whiting A, Girkin JM, Ambler CA. Bullseye analysis: A fluorescence microscopy technique to detect local changes in intracellular Reactive Oxygen Species (ROS) production. Microsc. Microanal. [Internet]. 2023; 29(2):529–539. doi: https://doi.org/g8rqgr

Manduzio H, Rocher B, Durand F, Galap C, Leboulenger F. The point about oxidative stress in molluscs. Invertebrate Surviv. J. [Internet] 2005 [cited 25 Jun. 2024]; 2(2):91–104. Available in: https://goo.su/Cs7k2H

Maltby L, Clayton SA, Wood RM, McLoughlin N. Evaluation of the Gammarus pulex in situ feeding assay as a biomonitor of water quality: Robustness, responsiveness, and relevance. Environ. Toxicol. Chem. [Internet]. 2002; 21(2):361–368. doi: https://doi.org/cxcjqf

Charles J, Crini G, Degiorgi F, Sancey B, Morin–Crini N, Badot PM. Unexpected toxic interactions in the freshwater amphipod Gammarus pulex (L.) exposed to binary copper and nickel mixtures. Environ. Sci. Pollut. Res. [Internet]. 2014; 21(2):1099–1111. doi: https://doi.org/f5nqk2

Aydin AN, Serdar O, Çiçek–Çimen IC. Determination of oxidative stress responses induced by copper oxide (CuO) nanoparticle in Gammarus pulex. Res. Sq. [Preprint]. 2024 [cited 25 Jun. 2024]: [16 p.]. doi: https://doi.org/g8rqgs

Yildirim NC, Serdar O, Derman T. Individual and combined toxicity of polycyclic aromatic hydrocarbons phenanthrene and fluoranthene in freshwater amphipod Gammarus pulex (L., 1758) (Amphipoda: Gammaridae). Acta Zool. Bulg. [Internet] 2023 [cited 28 Jun. 2024]; 75(3):387–394. Available in: https://goo.su/TAciiX

Shahid N, Siddique A, Liess M. Predicting the combined effects of multiple stressors and stress adaptation in Gammarus pulex. Environ. Sci. Technol. [Internet]. 2024; 58(29):12899–12908. doi: https://doi.org/g8rqgt

AstraZeneca. Naproxen acid: Acute toxicity to Gammarus pulex. Report BL8099/B. Devon (UK): Brixham Environmental Laboratory; 2005.

Huntjens DRH, Spalding DJM, Danhof M, Della Pasqua OE. Correlation between in vitro and in vivo concentration–effect relationships of naproxen in rats and healthy volunteers. Br. J. Pharmacol. [Internet]. 2006; 148(4):396–404. doi: https://doi.org/bkmzsg

Ohkawa H, Ohishi, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem. [Internet]. 1979; 95(2):351–358. doi: https://doi.org/bktx4x

Ellman GL. Tissue sulfhydryl groups. Arch. Biochem. Biophys. [Internet]. 1959; 82(1):70–77. doi: https://doi.org/bz2vt8

Aebi H. Catalase. In: Bergmeyer HU, editor. Methods of enzymatic análisis. [Internet]. 2nd ed. Vol. 2. London: Academic Press; 1984. p. 673–684. https://doi.org/gj9cbj

Beauchamp C, Fridovich I. Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal. Biochem. [Internet]. 1971; 44(1):276–287. doi: https://doi.org/c8mb2f

Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J. Biol. Chem. [Internet]. 1951; 193(1):265–275. doi: https://doi.org/ghv6nr

Tripathi G, Verma P. Fenvalerate–induced changes in a catfish, Clarias batrachus: metabolic enzymes, RNA and protein. Comp. Biochem. Physiol. C, Toxicol. Pharmacol. [Internet]. 2004; 138(1):75–79. doi: https://doi.org/bw4cg6

Gagné F, Blaise C, Fournier M, Hansen PD. Effects of selected pharmaceutical products on phagocytic activity in Elliptio complanata mussels. Comp. Biochem. Physiol. C, Toxicol. Pharmacol. [Internet]. 2006; 143(2):179–186. doi: https://doi.org/cr38h3

Contardo–Jara V, Lorenz C, Pflugmacher S, Nützmann G, Kloas W, Wiegand C. Exposure to human pharmaceuticals Carbamazepine, Ibuprofen and Bezafibrate causes molecular effects in Dreissena polymorpha. Aquat Toxicol. [Internet]. 2011; 105(3–4):428–437. doi: https://doi.org/bnmgtf

Oliveira LL, Antunes SC, Gonçalves F, Rocha O, Nunes B. Evaluation of ecotoxicological effects of drugs on Daphnia magna using different enzymatic biomarkers. Ecotoxicol. Environ. Saf. [Internet]. 2015; 119:123–131. doi: https://doi.org/f7hjcq

Dellali M, Douggui A, Harrath AH, Mansour L, Alwasel S, Beyrem H, Gyedu–Ababio T, Rohal–Lupher M, Boufahja F. Acute toxicity and biomarker responses in Gammarus locusta amphipods exposed to copper, cadmium, and the organochlorine insecticide dieldrin. Environ. Sci. Pollut. Res. [Internet]. 2021; 28(27):36523–36534. doi: https://doi.org/gwhznv

García–Medina AL, Galar–Martínez M, García–Medina S, Gómez–Oliván LM, Razo–Estrada C. Naproxen–enriched artificial sediment induces oxidative stress and genotoxicity in Hyalella azteca. Water Air Soil Pollut. [Internet]. 2015; 226(6):195–110. doi: https://doi.org/gwbcjr

Gutteridge JM. The role of superoxide and hydroxyl radicals in phospholipid peroxidation catalyzed by iron salts. FEBS Lett. [Internet]. 1982; 150(2):454–458. doi: https://doi.org/bg6kr8

Aguirre–Martínez GV, DelValls AT, Martín–Díaz ML. Yes, caffeine, ibuprofen, carbamazepine, novobiocin and tamoxifen have an effect on Corbicula fluminea (Müller, 1774). Ecotoxicol. Environ. Saf. [Internet]. 2015; 120:142–154. doi: https://doi.org/f7msqx

Mathias FT, Fockink DH, Disner GR, Prodocimo V, Ribas JLC, Ramos LP, Cestari MM, de Assis HCS. Effects of low concentrations of ibuprofen on freshwater fish Rhamdia quelen. Environ. Toxicol. Pharmacol. [Internet]. 2018; 59:105–113. doi: https://doi.org/gdk7ds

Quinn B, Schmidt W, O’Rourke K, Hernan R. Effects of the pharmaceuticals gemfibrozil and diclofenac on biomarker expression in the zebra mussel (Dreissena polymorpha) and their comparison with standardised toxicity tests. Chemosphere [Internet]. 2011; 84(5):657–663. doi: https://doi.org/cf5n6s

Wang L, Peng Y, Nie X, Pan B, Ku P, Bao S. Gene response of CYP360A, CYP314, and GST and whole–organism changes in Daphnia magna exposed to ibuprofen. Comp. Biochem. Physiol. C, Toxicol. Pharmacol. [Internet]. 2016; 179:49–56. doi: https://doi.org/f74rh3

Cong B, Liu C, Wang L, Chai Y. The impact on antioxidant enzyme activity and related gene expression following adult zebrafish (Danio rerio) exposure to dimethyl phthalate. Animals [Internet]. 2020; 10(4):717. doi: https://doi.org/g7ssd4

Guiloski IC, Ribas JLC, Piancini LDS, Dagostim AC, Cirio SM, Fávaro LF, Boschen SL, Cestari MM, da Cunha C, de Assis HCS. Paracetamol causes endocrine disruption and hepatotoxicity in male fish Rhamdia quelen after subchronic exposure. Environ. Toxicol. Pharmacol. [Internet]. 2017; 53:111–120. doi: https://doi.org/gbshgh

Davies KJA. Oxidative stress, antioxidant defenses, and damage removal, repair, and replacement systems. IUBMB Life [Internet]. 2008; 50(4–5):279–289. doi: https://doi.org/drjnbb

Zivna D, Plhalova L, Praskova E, Stepanova S, Siroka Z, Sevcikova M, Blahova J, Bartoskova M, Marsalek P, Skoric M, Svobodova Z. Oxidative stress parameters in fish after subchronic exposure to acetylsalicylic acid. Neuro Endocrinol. Lett. [Internet] 2013 [cited 25 Jul. 2023]; 34(Suppl. 2):116– 122. PMID: 24362103. Available in: https://goo.su/TYQcHj

Yildirim NC, Serdar O, Basaran S. The use of Gammarus pulex as a model organism for ecotoxicological assessment of ibuprofen and propranolol at environmental relevant concentrations. Int. J. Environ. Health Res. [Internet]. 2022; 32(11):2385–2395. doi: https://doi.org/g8rqgw

Costa S, Coppola F, Pretti C, Intorre L, Meucci V, Soares AMVM, Freitas R, Solé M. The influence of climate change related on the response of two clam species to diclofenac. Ecotoxicol. Environ. Saf. [Internet]. 2019; 189:109899. doi: https://doi.org/gmqc5s

Pawłowska B, Telesiński A, Biczak R. Effect of diclofenac and naproxen and their mixture on spring barley seedlings and Heterocypris incongruens. Environ. Toxicol. Pharmacol. [Internet]. 2021; 88:103746. doi: https://doi.org/grgh66

Nunes B, Daniel D, Canelas GG, Barros J, Correia AT. Toxic effects of environmentally realistic concentrations of diclofenac in organisms from two distinct trophic levels, Hediste diversicolor and Solea senegalensis. Comp. Biochem. Physiol. C, Toxicol. Pharmacol. [Internet]. 2020; 231:108722. doi: https://doi.org/g8rqgx

Trombini C, Kazakova J, Villar–Navarro M, Hampel M, Fernández–Torres R, Bello–López MÁ, Blasco J. Bioaccumulation and biochemical responses in the peppery furrow shell Scrobicularia plana exposed to a pharmaceutical cocktail at sub–lethal concentrations. Ecotoxicol. Environ. Saf. [Internet]. 2022; 242:113845. doi: https://doi.org/gwgn6w

Ahmad MH, Fatima M, Hossain M, Mondal AC. Evaluation of naproxen–induced oxidative stress, hepatotoxicity and in–vivo genotoxicity in male Wistar rats. J. Pharm. Anal. [Internet]. 2018; 8(6):400–406. doi: https://doi.org/g8rqgz

Benhar M. Oxidants, antioxidants and thiol redox switches in the control of regulated cell death pathways. Antioxidants [Internet]. 2020; 9(4):309. doi: https://doi.org/gps3z7

Publicado
2024-11-24
Cómo citar
1.
Seker E. Efecto del naproxeno sobre los biomarcadores de estrés oxidativo en Gammarus pulex. Rev. Cient. FCV-LUZ [Internet]. 24 de noviembre de 2024 [citado 29 de noviembre de 2024];34(3):8. Disponible en: https://produccioncientificaluz.org/index.php/cientifica/article/view/42950
Sección
Medicina Veterinaria